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Abstract—A Neural Networks (NN) feed-forward multi-layer with 

Levenberg-Marquardt training algorithm was developed to predict the 

yield for steam extraction of eucalyptus essential oil. The developed 

techniques are based on four independent variables including 

temperature, residence time, particle size and mass flux per unit mas of 

substratum that affected on the yield of leached oil. Different networks 

were trained and tested with different network parameters for training 

and testing data sets. To confirm the network generation, an 

independent data set was used and the predictability of the network 

was statistically assessed. The regression coefficient (R2) of 0.9737 

implies that the predicted values have an excellent agreement with the 

experimental date. A mass transfer based mathematical model was 

developed for constant rate period and diffusion-controlled regime of 

steam extraction. The proposed model was numerically solved using 

the Fick’s second law in steady-state for one dimensional diffusion in 

rectangle coordinates. The predicted results have shown that the 

applied technique of the neural network has better adjusted the 

experimental data when compared with the mathematical model. 

 
Keywords—Essential oil, mathematical model, neural network, 

steam extraction.  

I. INTRODUCTION 

Steam extraction is the traditional method used in aromatic 

industry to obtain essential oils from leaves. This extraction 

method is less expensive when it is compared with 

technologically advanced methods such as supercritical fluid 

extraction [1]. Mathematical models are used to simulate and 

optimize the process without having to perform experiments in 

order to know its extraction process behavior, aiming the 

reduction of experimental procedures in process operation and 

design. For this purpose, different approaches have been 

proposed in the literature. Reference [2] applied steam 

extraction for essential oil of coriander fruits. The authors 

modelled the steam extraction as an irreversible desorption of 

essential oil in water, with first-order rate and flashing due to the 

formation of phase equilibrium. Reference [3] developed a 

mathematical model for hydro distillation and steam extraction 

where two types of particles were taken into consideration. The 

first are leaves where a part of the solute is deposited on the 

surface in fragile glandular trichomes, and the second are the 

ground particles with initially homogeneous solute distribution. 

 
 Manuscript received September 4, 2017.  

Reference [1] used a diffusion model to model the extraction of 

cymbopogon winterianus essential oil at laboratorial scale thus 

allowing a good prevision on industrial scale. Reference [4] 

modelled the steam extraction process on semi continuous mode 

considering three stages in the process of obtaining oil. First a 

thermal oil exudation from the glandular trichomes occurred, 

secondly vapor-liquid equilibrium at the interface is assumed, 

and finally the mass transfer of the oil in vapor-phase. Reference 

[5] used the same model to simulate the steam extraction 

process data for rosemary, basil, and lavender essential oils. 

Reference [6], [7] investigated the effect of temperature and 

extraction time on the extraction process with oil vapor and 

established a mathematical model based on Fick’s first law 

applied to material balance for the pilot plant. Reference [8] 

used steam extraction for Rosemary (R. Officinallis) to study a 

theoretical-experimental dynamic process of oil extraction. The 

mathematical modelling is composed of a differential equation 

of balance of matter in fluid phase that considers the 

accumulation in the fluid and the solid material. Reference [9] 

developed a mathematical model based on the assumption of 

intact particle streams. In the first of which the oil extraction is 

governed by diffusion processes, and in the second state of 

equilibrium between the solid and liquid phase is established. 

Reference [10], investigated the steam extraction of the 

essential oils for Lavandin Super Oil according to the model 

Dunkhorst-Houghton, which considers the effect of axial 

dispersion, and the use of optimization procedures to establish 

the model parameters. Experimental data for lavadin super oil 

were used to correlate model parameters. Reference [11] 

developed a model based on diffusion of essential oil from 

eucalyptus leaves to optimize the oil recovery. Using the 

numerical method, the best diffusion coefficient was established 

for different operating conditions by comparing the model 

concentration of oil remaining in the leaves with the 

experimental amount of oil recovered. In most of the mentioned 

steam extraction modelling approaches, essential oil was 

considered as a single compound. However, essential oil is not a 

single compound and its composition varies during the 

extraction process therefore these methods results in inaccurate 

diffusivities. Diffusivity of the solute in the solid matrix is 

another important parameter which should be determined 
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experimentally or optimized based on experimental yield data. 

As a result of these constraints, almost in all of steam extraction 

modelling, the researchers consider some hypothesis in their 

case to simplify their model and decrease the model parameters, 

then they tune their model with one or two of the mentioned 

parameters to fit the experimental data. It is clear that the 

process of steam extraction of essential oil is complex because 

the solid matrix containing the essential oil has different 

structure and that the essential oil is a mixture of many 

components formed basically by terpenes. In some cases oil 

may be characterized based on a single component if this is in 

high concentration relative to the other. On the other hand, the 

mathematical model that simulate the dynamic process of 

extraction of essential oil by steam extraction introduces 

uncertain parameters value such as diffusion coefficient in the 

particle and mass transfer coefficient that are dependent on the 

geometry and nature of the plant. Due to complexity of the 

process, it is difficult to be modelled and simulated using 

conventional mathematical model. In recent years, considerable 

advancement in artificial intelligent techniques has been taken 

place to predict the response in complex and difficult situations. 

Such techniques can enhance predicting capability of the model 

when mathematical or statistical methods are difficult to 

formulate and fails to predict with desired accuracy [12]. NN, 

artificial intelligent technique is considered as promising tool 

because of their simplicity toward simulation, prediction and 

modelling [13], [14]. In this study, a NN technique is developed 

for simulating steam extraction of essential oil of eucalyptus 

leaves based on mass transfer differential equations for constant 

rate and diffusion-controlled regime of extraction. In order to 

compare predictability of NN model and mathematical 

technique, the results of each are compared with experimental 

data at the same conditions. 

II. PROCEDURE FOR PAPER SUBMISSION 

A. Neural Network 

Neural network is known for their ability of learning, 

simulation, and prediction of data. The inspiration of NN came 

from studies on the structure and function of the brain and nerve 

systems as well as the mechanism of learning and responding 

[13], [15]. The network consists of numerous individual 

processing units (neurons) and commonly interconnected in a 

variety of structures. The strength of these interconnections is 

determined by the weight associated with neurons. The 

multilayer perceptron (MLP) and back propagation (BP) are the 

most common and successful NN architecture with 

feed-forward network topologies in the modelling applications 

and supervised learning technique, respectively [15]. BP is the 

process by which derivatives of network error, with respect to 

the networks, is feedback to the network. This algorithm is used 

to adjust the weights so that the error decreases and the neural 

model get closer to producing the desired outputs. In this way, 

BP offers a method of minimizing errors between obtained 

outputs and desired target values [16]. Preprocess the data, 

create the network object, train the network and simulate the 

network response to new inputs are the four steps to develop a 

BPNN for modelling [16], [17]. In this study, firstly the inputs 

and targets data were scale within the range 0 and 1. Secondly, 

the data set was divided into training set for computing the 

gradient and updating the network weights; validation set for 

improving generalization and testing set for validating the 

network performance. The data in each subset were selected 

randomly to create a network. A total of ten training algorithms 

were conducted to simulate the test data. The performances of 

the network in each training process and the best network with 

the highest prediction performances were recorded.  

B. Development of a Neural Network Model  

Neural network Toolbox 5.1 in MATLAB 7.4 (R 2017a) 

mathematical software was used to predict the leaching yield of 

essential oil. According to [18] stating that in a multi-layer 

neural network with one hidden layer will never require neurons 

more than twice as many as inputs, a 10-neuron hidden layer 

was initially used in the network.  

Since the main goal was to find the network having the best 

performance on new data, seven networks involving 4-10 

hidden neurons were trained and tested while ten BP training 

algorithm and transfer functions were applied to each. The 

approach to the comparison of the networks was to evaluate an 

error function using data which were independent on those used 

for training.  

Each network was separately trained and tested by 

minimization of an appropriate error function defined with 

respect to data set. This means that during training and testing 

process, the error decreased. However, when the network began 

to overfit the data, the error on the testing set began to rise. 

When the testing error increased for a specified number of 

iterations, the training was stopped, and the weights and biases 

at the minimum of the testing error were returned. To assess the 

network a third independent data set called validating set was 

used and an in biased estimate of the validating error, which is 

called generalization error, was obtained and evaluated. Each 

selected network was run on the validating data set of nine 

different extraction conditions. The network received inputs 

including residence time, temperature, particle size and mass 

flux and predicted yield of essential oil as output. In order to 

evaluate the results, obtained regression coefficient and mean 

square error, predicted values were statistically compared with 

experimental data. The configuration of the BPNN giving the 

smallest MSE was LMA (4-10-1) with a tangent sigmoid 

transfer function (tansig) at hidden layer with 10 neurons and a 

linear transfer function (purelin) at out layer. 

To improve the generalization of the selected network, the 

network with the above topology was run on experimental data 

and regression coefficient as well as regression line between 

predicted values from the neural network and the experimental 

data were obtained to assess the network predictability.  

C. Mathematical Modelling 

The mathematical model of steam extraction of essential oil 

was formulated using a model based on Fick’s second laws in 

steady-state for one-dimensional diffusion in rectangle 
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coordinates on mass balance of the extracted oil as discussed by 

[1]. The mathematical model is based on the following 

assumptions: 

1. The essential oil extracted is composed of several chemical 

components, but it was considered as being represented by 

one pseudo component. 

2. Steam is uniformly distributed in the extractor. 

3. The mass transfer per unit volume extraction bed between 

solid and fluid phases are governed by a linear driving force. 

Diffusion occurs normal to a surface with an area A and 

through a volume element AΔx. A material balance on 

component i entering at x and leaving at x+Δx yield. 

The mathematical formulation is expressed as: 

xARxA
t

C
i

i 



                                                        (3)                                                                                                    

For the case of diffusion 

i
i

ij
i R

x

C
D

t

C










2

2

                                                      (4) 

where D is the diffusion coefficient and Ci is the initial 

concentration. 

When no chemical reactions occur, Ri = 0, 
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The initial and boundary conditions are: 

AOA CC         in t = 0                                                           (7) 

0AC             in x = 0                                                          (8) 

0AC             in x = L                                                          (9) 

where L is the thickness of the leave and CA0 is the initial 

concentration at time, t = 0.  

Applying these equations to the boundary conditions, 
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The system of partial differential equation is solved using a 

separation of variables techniques. ),( txCA is assumed to be 

separable into independent functions of position and 

transformed time of the form. 
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Equation (6) becomes: 
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where β
2
 is the arbitrary constant. 
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With the boundary condition of: 
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The solution of (15) has the general form of 
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From (18), we can see that A = 0 and B may be arbitrarily 

chosen. Without loss of generality, set β = 1. 

Thus the solution to the spatial problem is: 
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where βn: n = 1, 2, 3… are given by the positive roots defined by 

the boundary condition in (19), that is, 
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Initial conditions, the complete solution for the system involves 

Φ(x, t) being constructed by a linear supposition of the solutions 
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(14) and (19) in (22) 
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Where δn are constant coefficients used to satisfy the initial 

boundary conditions. The values of δn can be explicitly 

determined by solving (23) at t = 0. 
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And using the property that the cosine functions are orthogonal 
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Substituting in these coefficients, the generalized solution 

becomes 
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The mass flow as function time was obtained from the mass flux 

at the boundary multiplied by normal surface area A resulting. 
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Thus the extracted mass of solute constituent is 
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and the degree extraction is defined by 
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III. RESULTS AND DISCUSSION 

In the diffusion model based on material balance in the two 

phases (solid-liquid) present in the extraction process, the 

parameter D was directly adjusted using (33) with one term in 

the series. The parameter D was estimated by minimization of 

the sum of square of error between the experimental data and the 

prediction model. Analyzing the Fig. 1, it can be seen that 

diffusion model based on mass transfer fitted very well the 

experimental data. The diffusion model is based in material 

balance across internal surface of particle assuming that the 

components to be extracted are uniformly distributed inside the 

particle and the surface resistance is negligible. Fig. 1 illustrates 

the total extraction yield curve (total yield versus extraction 

time) of eucalyptus leaves resulted from mathematical model 

and corresponding experimental data at the temperature of 

97
o
C, residence time of 0.2 minutes, leave particle size of 

0.00005 m and mass flux of 0.01 kg/m
2
s. 

 
Fig. 1.  Predicted results of mathematical model in comparison with 

experimental data 

 

   A schematic NN structure is shown in Fig. 2: a three-layer 

NN, with tangent sigmoid transfer function (tansig) at hidden 

layer with 10 neurons and a linear transfer function (purelin) at 

output layer. A multi-layer perceptron (MLP) was selected as 

the relevant network type for training with experimental data. 

Selected input variables were: temperature, residence time, 

mass flux and the particle size with yield of leached oil as the 

output variable. In order to estimate the behavior of the steam 

extraction, the values for input variables were randomly 

collected from the experimental dataset and divided into three 

partitions. The first set (70% of data) was used as training data, 

second set (20%) for validation and evaluation of network 

quality during the training phase. The third set (10%) for testing 

network performance. MLP network was studied by different 

number of neurons in the hidden layer and with different 

transfer function. The final best model was selected based on the 

minimum root-mean-square error and the maximum coefficient 

of determination. 

 
Fig. 2.  A schematic diagram of the neural network structure 

 

 
Fig. 3.  A schematic diagram of the neural network structure 

 

Fig. 3 shows a comparison of predicted results of NN 

technique with experimental data at temperature of 90
o
C, mass 

flux 0.10 kg/m
2
s, time of 0.2 min and particle size of 0.00005 m. 

Mathematical model, neural network and experimental data 

were juxtaposed in Fig. 4. As can be seen, neural network can 

predict at various operational conditions much better than 

mathematical model. 
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Fig. 4.  Comparison between Mathematical model, neural network and 

Experimental data 

 

As it is shown in Fig. 4, the predictions result of the neural 

network model have a very good agreement with the 

experimental data compared to the mathematical model results. 

It is noticeable that during the training process the entire 

network parameters weights are optimized simultaneously to 

minimize mean square error between predictions and training 

data set that involves the experimental data.  

 
Fig. 5.  Correlation between measured and predicted values of total 

extraction yield 

 

A regression analysis of the network response between NN 

outputs and the corresponding targets was performed. The 

graphical output of the network outputs plotted versus the 

targets is illustrated in Fig. 5. Taking into account the non-linear 

dependence of the data, linear regression shows an excellent 

agreement between NN outputs (predicted data) and the 

corresponding targets (experimental data) with the best linear 

equation y = 0.9472 + 0.2066 and regression coefficient (R
2
) of 

0.9725. 
 

TABLE I: PREDICTED AND EXPERIMENTAL VALUES AT DIFFERENT 

OPERATIONAL CONDITIONS 

Series           Time           Temperature            Particle size                  Mass flux 

number         (min)                 (oC)                         (m)                          (kg/m2.s) 

___________________________________________________________ 

      1                0.20                      95                          0.00005                              0.12 

      2                0.25                      95                          0.00005                              0.11 

      3                0.22                      95                          0.00005                              0.10 

      4                0.20                      97                          0.00005                              0.10 

      5                0.30                      97                          0.00005                              0.11 

      6                0.32                      99                          0.00005                              0.12 

      7                0.18                      99                          0.00005                              0.10 

      8                0.20                      99                          0.00005                              0.10 

      9                0.20                      99                          0.00005                              0.09 

 

TABLE II:  PREDICTED AND EXPERIMENTAL VALUES FOR THE YIELDS (KG 

OIL/KG EUCALYPTUS LEAVES) 

Series number        Experimental values       Predicted values      Deviation (%)                            
___________________________________________________________ 

            1                                 0.0165                             0.0150                       9.09               

            2                                 0.0170                             0.0175                       9.71 

            3                                 0.0160                             0.0160                       0.00 

            4                                 0.0171                             0.0150                       8.77 

            5                                 0.0203                             0.0160                       7.98 

            6                                 0.0057                             0.0060                        9.50 

            7                                 0.0051                             0.0040                        7.84 

            8                                 0.0027                             0.0026                        9.60                

            9                                 0.0067                             0.0055                        8.21 

 

Generalization of the network was evaluated by comparing 

predicted values from the neural network model with 

experimental data that reported by [6] at the same operational 

conditions. The Table I presents a series of the operational 

conditions and experimental data of yields from the literature 

[6] as well as predicted values from the neural network model at 

the same conditions. While the Table II shows the deviation 

between experimental and predicted values of total yields for 

each operational condition. The average deviation of 7% 

implies that the predictability of the neural network model is 

satisfactory. In order to compare the mathematical model results 

with the neural network results, the mathematical model and the 

neural network model were run on the same experimental 

conditions and predicted results of the mathematical model 

were compared with experimental data. Better performance of 

NN techniques was confirmed by comparing mean squared 

error (MSE) and root mean square error (RMSE) with the 

mathematical model as illustrated in Table III. 
TABLE III 

MEAN SQUARED ERROR AND ROOT MEAN SQUARE ERROR FOR NN AND 

MATHEMATICAL MODEL 

Error                              NN    MM 

    MSE                                      0.928                             0.746 

   RMSE                                    0.950                             0.636 

__________________________________________________________ 

IV. CONCLUSION 

Since mathematical modelling is based on some assumptions 

made to derive and solve the model. The model results may 

have deviations from the reality. The importance of this kind of 

deviations becomes more crucial when the mathematical model 

is used for simulating and optimizing a very costly process, such 

as steam extraction of eucalyptus leaves essential oil. Neural 

networks technique with a tangent sigmoid transfer function 

(tansig) at hidden layer and a linear transfer function (purelin) 

at output layer were proposed. The proposed NN model showed 

a good, precise and an effective prediction of the experimental 

data with a satisfactory result with of R
2
 = 0.9737 for four 

independent variables that affected the yield of leached oil. The 

results showed an excellent agreement between NN results and 

experimental data. The predictability of the neural network 

model was better than that of the mathematical model. 
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