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Abstract— In the present work, we have synthesized Xanthan 

gum-cl-poly (acrylic acid) / Reduced Graphene Oxide hydrogel 

nanocomposite as adsorbent via microwave assisted copolymerization 

of acrylic acid (AA) onto xanthan gum (XG) backbone. MBA and APS 

were used as crosslinker and initiator, respectively. Reduced Graphene 

Oxide (rGO) was incorporated into the hydrogel matrix during the 

grafting reaction. The infrared spectra (FTIR) and Scanning electron 

microscopy (SEM) were used to verify the adsorbent formed under 

optimized reaction conditions. XG-cl-pAA/rGO hydrogel 

nanocomposite was used for adsorption of methylene blue (MB) from 

aqueous solutions. The factors influencing adsorption capacity of the 

absorbents such pH of the initial dye solution, dose of adsorbent, 

contact time, and initial dye concentration were investigated via a 

batch adsorption system. The maximum adsorption capacity (qm), 

calculated based on the Langmuir isotherm for MB was 526.3 mg g−1 

at 30°C. The adsorption kinetics and isotherms were found to follow 

Pseudo-second-order kinetic model and Langmuir model, 

respectively. 

 
Keywords— Xanthan gum, hydrogel composite, Microwave 

irradiation, Adsorption; Isotherm 

I. INTRODUCTION 

    With nanotechnology, a large set of materials and improved 

products rely on a change in the physical properties when the 

feature sizes are shrunk. These nanomaterials are used in many 

applications such as sensors, water purification, antimicrobial, 

catalysis, biomedical, agricultural etc. [1-16] One of the most 

important application of nanomaterials in water purification are 

discuss in the present article. Due to the steady expansion of 

industrialization, the excessive release of various types of 

pollutants into water sources is one of the common problems 

global. For example, organic dyes are one of the most hazardous 

pollutants in industrial effluents that are discharged from 
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various industries such as textiles, leather, food, 

pharmaceuticals, cosmetics and paper. 

The presence of organic dyes water systems can be 

carcinogenic to animals and humans [17, 18]. A number of 

techniques have been applied for the removal of organic dyes 

from aqueous medium [19-21]. The adsorption is globally 

recognized as the most promising technique for the removal of 

organic dyes from the wastewater due to its cost-effective nature 

[22-24]. In this direction, the use of a low cost hydrogel based 

on biopolymer as an adsorbent for adsorption of organic dyes 

received widespread attentions.  

Xanthan gum (XG) is one of the natural polymers that have 

attracted considerable attention both in academic world and 

industrial. XG is efficient polyelectrolyte due to the presence of 

tunable hydroxyl (-OH) groups. It has been used widely in 

pharmaceutical and cosmetic industry as suspending agent and 

as additive in food, where it serves as a thickening agent [25]. 

XG is an anionic polysaccharide derived from Xanthomonas 

campestris. The structural unit of XG consists of backbone of β

-(1→4)-linked- D-glucopyranose glucan and alternate glucoses 

have a short branch consisting of a glucuronic acid sandwiched 

between two mannose units. The backbone of the XG is similar 

to the chemical structure of cellulose.  The side chains are 

consists therefore of β-(1→3)-α-linked D-mannopyranose-(1

→2)-β- D-glucuronic acid-(1→4) β-D- mannopyranose on 

alternating residues. The terminal D-mannose contains a 

pyruvic acid residue linked via keto group to the 4 and 6 

positions. The D-mannose unit linked to the main chain contains 

an acetyl group at position O-6 [26].The molecular structure of 

xanthan gum repeating unit (C35H49O29,) is displayed in 

(figure 1).   

Hydrogels are regarded as as hydrophilic, three-dimensional 

(3D) network with ability to swell and retain a significant 

fraction of water within its structure without dissolving in water. 

Biopolymer-based hydrogels have attracted intense interest in 

wastewater treatment owing to their high adsorption property, 

recovery capacities and regeneration for repeated recycles. 

However, hydrogels crosslinked by the conventional 

crosslinking agents have poor mechanical strength. To enhance 

the mechanical, sorption capacity and other properties of 

hydrogels an inorganic component such carbon-based, 

montmorillonite, polymeric, ceramic, and metallic 

nanomaterials [27-31] are incorporated in the hydrogel 
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polymeric matrix. For example, Huang et al., reported the 

incorporation of graphene oxide (GO) into polymer hydrogels 

to enhance their ability to retain a large amount of water [32]. In 

another study, Sui et al., synthesized rGO-based hydrogels and 

the prepared rGO hydrogel exhibit excellent mechanical and 

electrical properties [33]. To the best of our knowledge, no 

substantial work has been reported related to the adsorption 

performance of hydrogels with rGO can be found in literature so 

far. The aim of this study was to investigate the efficiency of the 

microwave-assisted XG-cl-pAA/rGO hydrogel composite in the 

removal of MB from the aqueous solutions. The equilibrium 

removal efficiency was studied using isotherm models and 

kinetic parameters of the adsorption process.  

 

 

 

 

 

 

 

 

 

 

Fig. 1. The molecular structure of xanthan gum. 

II. MATERIALS AND METHOD 

A. Materials 

    The biopolymer, xanthan gum (XG) from Xanthomonas 

campestris was supplied by Sigma-Aldrich (South Africa). Poly 

acrylic acid (pAA, 99%) monomer was obtained from 

Sigma-Aldrich (Netherlands) and acetone was procured from 

Merck (South Africa) and was used without further purification. 

Initiator ammonium persulfate (APS) (≥98%; 248614), the 

cross linker N, N’-methylene bis-acrylamide (MBA), 99%, 

Methylene blue (MB) cationic dye, were obtained from 

Sigma-Aldrich (South Africa) and used without further 

purification. ). Sodium hydroxide (NaOH) and Hydrochloric 

acid (HCL) were procured from Merck (South Africa). All 

reagents used were of analytical grade. For all the experiments, 

deionized (DI) water was used. The stock solution of MB (1000 

mg L−1) was prepared by dissolving an appropriate amount of 

dye in 1 L of deionized water, and the stock solution was further 

diluted for batch experiments. 

B. Synthesis of XG-cl-pAA/rGO Hydrogel Composite 

    Reduction of graphene oxide (rGO) was adapted from [34]. A 

polymer matrix composed of xanthan gum-cl-poly (AA) was 

prepared by using MBA as crosslinker and APS as initiator in a 

domestic microwave. The grafting of poly acrylic acid (pAA) 

onto (XG) in the presence of MBA cross linker by free radical 

co-polymerization technique. XG (0.1 g) was dissolved was 

homogenously dissolve in a 100 mL open beaker containing DI. 

Calculated amount of AA, MBA were added and APS was 

added in order to initiate the reaction of graft copolymerization. 

Then 80 mg rGO was dispersed in 5 mL of deionized water, and 

then sonicated for 5 min by using ultrasonicator, the rGO 

solution was added to the graft copolymerization reaction in a 

100 mL open beaker. The beaker was exposed under fixed 

microwave power for a definite time period in a domestic 

microwave oven with a microwave frequency of 2450 MHz. 

After desired time period, the XG-cl-pAA/rGO hydrogel 

composite was precipitated by pouring the reaction mixture into 

a large quantity of acetone and washed well to remove adhered 

homopolymer, if any is present along with graft copolymers. 

The precipitated copolymer was filtered and the copolymer 

samples obtained were finally dried under vacuum at 60 ◦C for 

>24 

C. Adsorption Studies 

MB sorption investigations were performed by the batch 

method. Adsorption examinations were carried out using 

XG-cl-pAA/rGO hydrogel composite as adsorbents on a 

temperature controlled incubator shaker set at 180 rpm kept up 

at 30 °C for 50 min. Here, known measures of adsorbents were 

completely mixed with 20 mL of individual MB solutions, 

whose concentrations and pHs were beforehand known. After 

the PE plastic bottles were shaken for the desired time, the 

suspensions were filtered through 0.45 µm PVDF syringe 

filters. The concentration of the unadsorbed dye left behind in 

each solution was analyzed using a UV/vis spectrophotometer 

(Shimadzu UV-1208 models) at the λmax of 662 nm for MB. The 

equilibrium uptake was calculated using Equation. (1): 

                                                                                                        
where qe is the equilibrium capacity of dye on the adsorbent 

(mgg
-1

), Co denotes the initial and the Ce denotes the 

equilibrium concentrations (mgL
-1

) of MB, respectively. V is 

the volume of dye solution used (L) and W is the weight of 

adsorbent (g) used. All the batch experiments were carried out 

in triplicate and results represented here are the average of three 

readings. 

III. CHARACTERIZATION 

LG (Model No. MS-283MC; 1300 W, Made: Korea) 

domestic microwave oven having 2450 MHz microwave 

frequency and a power output from 0 to 900 W was used for 

synthesis of hydrogel and hydrogel nanocomposite. The pH of 

the reaction mixture was adjusted using HCl or NaOH (0.1 M). 

The pH measurements were made with HI 9811-5/HI 1285-5 

(Romania).  FTIR spectra were recorded on a Spectrum-100 

Perkin Elmer, USA, in the spectral range of 4000 to 400 cm−1 

with a resolution of 4. The samples were compressed into pellets 

using spectroscopic grade KBr (Sigma-Aldrich, South Africa). 

The surface morphologies of the samples were examined by a 

scanning electron microscopy (SEM), (TESCAN, VEGA SEM) 

under a 20 kV electron acceleration voltage. To avoid charging 

these samples were coated with carbon. 
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IV. RESULTS AND DISCUSSION 

A. Characterization of XG and XG-cl-pAA/rGO 

FTIR-spectroscopy 

The structural changes of XG and XG-cl-pAA/rGO hydrogel 

composite were confirmed by FTIR spectroscopy. As shown 

from (figure 2a) the characteristic bands at 3246 cm−1, 2932 

cm-1, and 1404 cm-1 due to the characteristic stretching 

vibration of both primary and secondary O-H bonds , -CH 

stretching of alkyl group, and at 1404 cm-1 due to CH bending 

of methyl group  in XG, respectively. Additional characteristic 

absorption bands of the polysaccharide appear at 1023 cm−1 

due to stretching of the C O bond. In the cases of 

XG-cl-pAA/rGO hydrogel composite, the intensity of 

characteristic band at 1404 cm−1 was increased, which is 

attributed to the symmetric stretching mode of the carboxylate 

group confirms the formation of XG-cl-pAA/rGO hydrogel 

composite. Furthermore, a hump at 3142 cm−1 appeared in a 

broad absorption peak of XG after the surface-modification 

with AA. These results suggest that the copolymer of AA had 

been successfully grafted onto the XG. Additional peaks at 1537 

cm−1 related to the C=O asymmetric stretching of the 

carboxylate anions in the AA units were observed. 

 

 

 

 

 

 

 

 

 

 

Fig 1. (a) Shows the FT-IR spectra of the XG and XG-cl-pAA/rGO; 

SEM image resolution at 600x of (b) XG; (c) XG-cl-pAA/rGO and (d) 

MB loaded XG-cl-pAA/rGO. 

Surface Morphologies Characterization 

The surface morphologies of the XG and XG-cl-pAA/rGO 

are depicted in (figure 2b-c). SEM micrographs of the XG at 

600x (figure 2b) shows the granular morphology which suggests 

the amorphous nature of the biopolymer [35]. The SEM of 

XG-cl-pAA/rGO exhibits peeled smooth combined with rough 

uneven surface morphology shown in (figure 2c). The peeled 

smooth and rough uneven surface morphology observed for 

XG-cl-pAA/rGO hydrogel nanocomposite seem to have been 

covered by MB molecules after the adsorption MB onto the 

XG-cl-pAA/rGO hydrogel nanocomposite (figure 2d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Optimization of MB onto XG-cl-pAA/rGO hydrogel 

nanocomposite 

Effect of pH on the Adsorption of MB 

Figure 3a shows the effect of pH value of dye solution on the 

adsorption capacities of the XG-cl-pAA/rGO hydrogel 

nanocomposite. It was found that as the pH values increased 

from 1 to 5, the adsorption capacities of the XG-cl-pAA/rGO 

hydrogel nanocomposite sharply increased from 53.4 to 99.8 

mgg
-1

, and then tend to leveling off with further increase in pH. 

Increasing the pH of solution, deprotonation of 

XG-cl-pAA/rGO derivative is realized and strong attractive 

forces, between the positive charged dye and negatively charged 

XG-cl-pAA/rGO, which is favorable to increase the absorption 

for MB. 

Effect of Adsorbent Dose  

Figure 3b demonstrates the effect of XG-cl-pAA/rGO 

hydrogel nanocomposite dosage on the removal of MB from 

aqueous solution. The percentage adsorption of MB was studied 

at various amounts of hydrogel and hydrogel nanocomposite 

samples in the range of 10 to 90 mg with an increment of 20 mg. 

This result can be explained on the basis of higher surface area 

of the absorbent as well as availability of more adsorption sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500 1000 1500 2000 2500 3000 3500 4000

 

 Wavenumber (cm
-1)

T
ra

n
s
m

it
ta

n
c
e
 (%

)

 XG
 XG-cl-pAA/rGO

 

 

(a)

9th Int'l Conference on Advances in Science, Engineering, Technology & Waste Management (ASETWM-17) Nov. 27-28, 2017 Parys, South Africa

https://doi.org/10.17758/EARES.EAP1117058 161



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Effect of (a) pH; (b) absorbent dose; (c) time on MB dye 

adsorption; and (d) Concentration on MB dye adsorption capacity in 

(mg g-1). 

C.  Kinetic Models 

    Pseudo-first-order and the pseudo-second order equations 

MB removal by XG-cl-pAA/rGO hydrogel nanocomposite as a 

function of contact time was measured and the results are shown 

in (figure 3c). The kinetic parameters obtained at 200 mgL-1 

concentration of MB are illustrated in (Table 1) The 

pseudo-first-order kinetic model of Langergren (Equation.(2)) 

[36] and the pseudo-second order kinetic (Equation.(3))[37] 

models were most often used to govern the rate constant and to 

examine the mechanism of the adsorption process. Their linear 

forms can be expressed as:                                                                

  1log
log

2.030
e t

e

e

q q k
q

q


 

(2)                                                                                   

2

1

t ee

t t

q qk q
 


                                                                  (3) 

Where qe (mg g-1) is the adsorption capacity of 

XG-cl-pAA/rGO hydrogel nanocomposite in equilibrium; K1 

(min-1) is the rate constant of the pseudo-first-order model; and 

K' (g mg-1 min-1) is the rate constant of the 

pseudo-second-order model. The experimental data in were 

fitted linearly by using Equation (2) and (3). These results 

indicate that the pseudo-second-order kinetic model gave a 

better correlation for the adsorption of MB on XG-cl-pAA/rGO 

hydrogel nanocomposite compared to the pseudo-first-order 

model. Furthermore, this result suggests that the chemical 

interaction between the MB and the XG-cl-pAA/rGO hydrogel 

nanocomposite surfaces is dominated the adsorption process. 

TABLE I: KINETIC PARAMETERS FOR MB ADSORPTION BY 

XG-CL-PAA/RGO HYDROGEL NANOCOMPOSITE. 

Pseudo first order 

qm                            k1                     R
2 

(mg/g)                      (min−1) 

12.08                           0.0138                    0.957 

 

 

Pseudo second order 

qe                            k2                     R
2 

(mg/g)                  (g (mg min)
−1

) 

166.66               6.92x10
-3 

                       0.999 

D. Equilibrium models 

Langmuir isotherm 

The Langmuir isotherm theory infers monolayer coverage of 

adsorbate over a homogenous adsorbent surface [38]. The 

equilibrium adsorption data were generally interpreted using 

Langmuir and Freundlich isotherm models. The isotherm 

constants for these models were calculated by linear regression 

method and given in (figure 3d). Langmuir isotherm can be 

given as Equation. (4) as follows 

 
When linearized, Equation (5) becomes: 

 
Where Ce is the equilibrium concentration (mg L

-1
) and qe the 

amount adsorbed at equilibrium (mg g
-1

). The Langmuir 

constants qm (mg g
-1

) represent the monolayer adsorption 

capacity and b relates the heat of adsorption. The linear plots of 

Ce/qe versus Ce at 30 ⁰C are summarized in (Table.2).   

The RL a dimensionless constant referred to as separation 

factor. RL is calculated using the following Equation (6): 

 
The RL values found in the present study were in the range of 

0.0957-0.0258 indicating that adsorption of MB by 

XG-cl-pAA/rGO hydrogel nanocomposite was favorable (0 < 

RL < 1). 

Freundlich isotherm 

The Freundlich equilibrium isotherm equation [39] is used 

for the description of multilayer adsorption with interaction 

between adsorbed molecules. The Freundlich isotherm is 

generally expressed as Equation (7) as follows: 

 
The linear expression takes the following form Equation (8) 

 
Where, qe is the adsorbed amount at equilibrium (mol g

−1
), Kf 

the Freundlich equilibrium constant (mol g
−1

)/ (mol L
−1

)
1/n

, n is 

indicative of the energy or intensity of the reaction and suggests 

the favourability and capacity of the adsorbent/adsorbate system. 

To determine the constant KF and n, may be used to plot ln qe 

against ln Ce at 30 ⁰C and the results were illustrated (Table.2). 

On the basis of the obtained results, the adsorption process was 

well described Langmuir isotherm model which assumes the 

mono-layer adsorption of the MB on the surface of 

XG-cl-pAA/rGO hydrogel.   
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TABLE II: PARAMETERS FOR MB ADSORPTION BY 

XG-CL-PAA/RGO HYDROGEL NANOCOMPOSITE ACCORDING TO 

DIFFERENT EQUILIBRIUM MODELS. 

Langmuir isotherm constants  

qm (mg/g)                    RL                     b                   R
2
 

769.23               0.0957-0.0258           0.047           0.995 

 

Freundlich isotherm constants 

n                    KF                          R
2
 

2.08           1.8935                    0.989 

V. CONCLUSIONS 

In the present study, XG-cl-pAA/rGO hydrogel 

nanocomposite was successfully synthesized by microwave 

irradiation method. This hydrogel nanocomposite was 

effectively used for the removal of MB dye from the aqueous 

medium. The adsorption was immensely dependent upon 

various parameters such as pH, adsorption dose, concentration, 

and time. On the basis of the obtained results, the adsorption 

process was well described by Pseudo second-order kinetic 

model and by Langmuir isotherm model, showing the chemical 

complexation between MB ions and -COO
-
 was mainly 

responsible for high adsorption capacity. The maximum 

adsorption capacity of MB onto XG-cl-PAA/rGO hydrogel 

nanocomposite was 769.23 mg g
−1

 at 30°C. This study revealed 

that XG-cl-pAA/rGO hydrogel nanocomposite is a potential 

candidate for the removal of MB dye from aqueous medium. 
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