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Abstract—We consider the problem of scheduling correlated 

parallel machines with release times to minimize number of tardy jobs 

and total weighted completion time. We consider different levels and 

combination of machine correlations and job correlations in the 

processing times. We first present a mix integer programming (MIP) 

model that can find optimal solutions for the studied problem. Next, 

we propose a bi-criteria heuristic that can find non-dominated 

solutions for the studied problem efficiently. Computational results 

show that the proposed heuristic is computationally efficient and 

provides solutions of reasonable quality. 
 

Keywords—Bicriteria, correlation, heuristic, parallel machines, 

scheduling   

I. INTRODUCTION 

In reality, multiple but conflicting objectives are usually 

considered when a manager plans the production scheduling. 

Hence, managers need to consider multiple objectives and 

trying to find a set of good solutions that satisfies all the 

considerations. Moreover, we examine correlated parallel 

machine scheduling problems since they better reflect real 

world manufacturing environments [1]. In this research, we 

consider the problem of scheduling n jobs on m correlated 

parallel machines to minimize number of tardy jobs and total 

weighted completion time (TWC) with release dates. Each job j 

has a release date (rj), a correlated processing time (pij) on 

machine i, a due date (dj) and a weight (wj). Job preemptions are 

not allowed. The number of tardy jobs (∑   
 
   ) is defined as 

Uj=1 if Cj>dj; 0, otherwise. It is often an objective in practice as 

it is a measure that can be recorded very easily where Cj is the 

completion time of job j. The total weighted completion time 

(∑     
 
   ) gives an indication of the total holding or inventory 

costs incurred by the schedule. Following the three-field 

notation of [1], we refer to this problem as 

  |                 | ∑   ∑    .  

This research considered correlated parallel machine 

scheduling problems. The studied correlated parallel machine 

scheduling problem is based on [2]. Reference [2] defined nine 

cases that considered different levels and combinations of 

machine correlations and job correlations for parallel machine  

environments. They also proposed processing time generation 

schemes for the nine cases. Reference [1] applied mathematical 

models on the nine cases defined by [2] to examine whether 
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some problems are more difficult to solve than others. 

Reference [1] first applied a mathematical model to solve 

correlated parallel machine scheduling problem to minimize 

makespan. Next, they used another mathematical model to 

solve correlated parallel machine scheduling problem to 

minimize total weighted tardiness with release time. Reference 

[1] concluded that as the machine and job correlations increase, 

the problem instances become more difficult for mathematical 

models to solve. This implies that branch-and-bound based 

algorithms might have more difficulty solving parallel machine 

scheduling problems with correlations than without 

correlations. 

In the last few decades, more and more researchers have 

studied bicriteria parallel machine scheduling problems. 

Reference [3] presented a heuristic based on simulated 

annealing (SA) and a neighborhood search for scheduling 

identical parallel machines to minimize the average flow time 

and the number of tardy jobs. Reference [4] suggested a model 

for a regular parallel machine scheduling problem to minimize 

the sum of machine holding cost and job tardiness cost. They 

proposed a heuristic based on a tabu search algorithm to search 

optimal or near optimal solutions. Reference [5] proposed a 

heuristic based on simulated annealing (SA) to minimize the 

total flow-time and the total number of tardy jobs on identical 

parallel machines. Reference [6] considered unrelated parallel 

machine scheduling problem with non-identical due dates, 

ready times, sequence-dependent and machine-dependent setup 

times. They proposed a genetic algorithm (GA) to solve this 

bi-objective problem to minimize the number of tardy jobs and 

the total completion time. Reference [7] considered a 

sequence-dependent setup with release times on unrelated 

parallel machine scheduling problem. They proposed a 

heuristic based on tabu search algorithm (TSA) to minimize the 

total weighted completion times and the total weighted 

tardiness. The results showed that the proposed TSA can find 

near optimal solutions in a short time. Reference [8] studied 

unrelated parallel machine scheduling problem. They first 

proposed a heuristic (LP-ATC) to minimize the makespan and 

the total weighted tardiness for unrelated parallel machine 

scheduling problem. Next, they proposed another heuristic 

(ATC-bi) to minimize the total weighted completion time and 

total weighted tardiness for unrelated machines scheduling 

problem. Moreover, [8] proposed a GA to minimize makespan, 

total weighted completion time and total weighted tardiness for 

unrelated machines scheduling problem. Reference [9] 

proposed a heuristic and a tabu search algorithm to find 

non-dominated solutions for bicriteria unrelated parallel 

machine scheduling problems with release dates. They 
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compared the proposed algorithm with other existing 

algorithms. They concluded that the proposed tabu search 

algorithm outperformed other algorithms in terms of the 

number of non-dominated solutions and the quality of its 

solutions. Reference [10] developed a heuristic to solve a batch 

scheduling problem on unrelated parallel machines with the 

objective of minimizing a linear combination of total weighted 

tardiness and the total weighted completion time. 

To the best of our knowledge, no research has yet been 

published that develops a heuristic to minimize the number of 

tardy jobs and total weighted completion time on correlated 

parallel machines with release times. The 

  |                 | ∑   ∑     problem is strongly NP-hard 

since the task of minimize number of tardy jobs on a single 

machine with release time (  |    |  ∑  ) is already NP-hard in 

the strong sense [11]. Since the studied problem is strongly 

NP-hard, it is impractical to solve it by using an exact algorithm. 

We present a heuristic to find non-dominated solutions for the 

  |                 | ∑   ∑     problem. 
 

Correlated parallel machines environment 

According to [1], when both machine and job correlation 

factors got involved in generating processing times, the 

problems have become difficult for the mathematical models to 

solve. This research mainly focusses on Case 9 defined by [2]. 

Case 9 is one of the most difficult cases for mathematical 

models to solve [1]. This implies that branch-and-bound based 

algorithms are sensitive to the distribution of the processing 

times. Moreover, [1] mentioned that the newly defined 

correlated parallel machine scheduling problems by [2] better 

fit real world manufacturing conditions and can thus provide 

results that better reflect real world scheduling problems. 

 Reference [2] used parameters Γ and Δ to control the 

relatedness of the generated processing times for the 

machine-correlated and job-correlated environments, 

respectively. Γ is inversely proportional to the relative 

dispersion of processing times between machines, and Δ is 

inversely proportional to the relative dispersion of processing 

times between jobs. The smaller the Γ or Δ value, the larger the 

variation it represents. The Γand Δ values are passed into the 

generation scheme and the scheme generates a problem 

instance. Case 9: Γ (      8)  Δ          ; job correlation is 

greater than machine correlation. Figure 1 shows examples 

with 3 jobs on 3 machines for Case 9. The variation of 

processing times for each job across the different machines is 

smaller than for the three jobs on the same machine. We use 

Γ=0.2 ; Δ=0.4 in Fig 1 as an example to explain Case 9. 

Assuming jobs are processed manually by human workers, it is 

virtually impossible that each worker requires exactly the same 

processing time on each job. Similarly, it is also unlikely that 

each machine will operate at a constant rate. In fact, small 

variations are likely to occur in processing times among 

individual machines. If the standard man-hour for processing 

job 3 is 60 minutes, operator A (M1) might spend 64 minutes 

processing job 3 as opposed to 65 minutes for operator B (M2) 

and 60 minutes for operator C (M3). Hence, it would be 

reasonable to assume that a job will result in a small dispersion 

of processing times with different machines and/or operators. 

II.  METHODOLOGY 

A. Integer Programming (IP) Model 

The studied problem can be written as an IP model based on 

the time-indexed formulation. The IP model that can generate 

the entire set of non-dominated solutions for the studied 

problem. The set of solutions provided by the IP serves as a 

reference set. 

 In the time-indexed formulation, the planning horizon is 

discretized into the periods 1, 2,…  T  where period t starts at 

time t-1 and ends at time t. All jobs have to be completed by 

time T. We assume              ∑ ∑    
 
   

 
   . The time 

index variable,     , is equal to 1 if job j starts on machine i at 

time t and is otherwise equal to zero. The IP model for the 

studied problem is described below. 
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Fig. 1 Example of Case 9 forms 
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Objective:    (   )∑      ∑                             (1) 

Subject to: 

∑ ∑       
       

    

 
                                             (2) 

∑ ∑     
 
     (          )

 
                 

                                                                               (3) 

∑ ∑     
  
   

 
                                                      (4) 

∑ ∑     (       )
       

   
 
                          (5) 

                                                                (6) 

     *   +                                          

                                                     (7) 

   *   +                                                              (8) 

Equation (1) indicates that the objective is to minimize ∑   

and TWC where   ,   - controls the weight of objectives. 

Constraint (2) requires that each job can start only at one exact 

particular time on only one machine. Constraint (3) ensures that 

at any given time on each machine only one job at most can be 

processed. Constraint (4) demands that each job cannot be 

processed before it is released. Using the time-indexed 

variables, the completion time of a job j can be written as 

constraint (5). Constraint (6) specifies the tardy jobs where M is 

a big number. Constraints (7-8) state the non-negativity and 

integrality restrictions. 

B. Bicriteria Heuristic 

The WCT-NEH is originally developed for solving unrelated 

parallel machines with release time to minimize total weighted 

completion time [12]. The WCT-NEH combines the ideas of 

weighted completion time (WCT) and the 

Nawaz-Enscore-Ham (NEH) procedure. The NEH procedure 

was proposed by [13] to minimize makespan for the flow shop 

scheduling problem. We propose a bicriteria heuristic based on 

WCT-NEH and earliest due date (EDD) rule, so it can solve 

bicriteria problem. The proposed bicriteria heuristic is 

described below. 
 

Bicriteria heuristic WCT_EDDR 

1
st
 phase: minimum completion time first 

Step 1. Let V denote the set of unscheduled jobs; let ti denote the 

total processing times of the jobs that have already been 

scheduled on machine i; let S0 denote the set of 

scheduled jobs arranged by 1
st
 phase. Initially, set 

V={1,...,n}, ti=0 for i=1,...,m, S0={null}.  

Step 2. Determine the unscheduled job    on machine i
*
 such 

that                      , where 

    (
  

   (     )    
) 

Step 3. Schedule job    in the next available position on 

machine i
*
. update        (       )       . Set 

    *  +.  
Step 4. Repeat Steps 2 to 3 until V={null}. The complete 

schedule is saved as S0. Add S0 into the solution set by 

setting solution set = solution set {num, ∑  , TWC} 

where num=0. 

Step 5. Pick the lth (l=1,...,n) job from the job sequence in S0 

and find m+n-2 schedules by placing it at all possible 

m+n-2 positions in schedule S0 without changing the 

relative positions of the remaining n-1 jobs. The number 

of enumerations in this step equals n(m+n-2).  

Step 6: Add the generated n(m+n-2) solutions into the solution 

set by setting solution set = solution set {num, ∑  , 

TWC} where num=  …  n(m+n-2). 

Step 7. Find the schedule from the solution set that has 

minimum TWC and save its schedule to S1.  

2
nd

 phase: EDD rule combines machine speed 

Step 8. Let S denote the set of jobs scheduled by the 2
nd 

phase; 

let A be the set of unscheduled jobs sorted in EDD rule; 

let B=(B1,B2,…,Bm) denote the set of machines sorted 

by nondecreasing order of sum of processing time of all 

jobs on machine i , ( ∑    
 
      ). Initially, set 

S2={null}, ti=0, for i=1,…,m, A=(A1,A2,…,An), and k=1.  

Step 9. Increase num by 1. 

Step 10. Based on jobs order in A, scan jobs from left to right, 

and find the first job p that assigns to the next available 

position on machine k without being tardy. If job p 

exists, then go to Step 13; otherwise, go to Step 11.  

Step 11. If k <m, set k=k+1 and return to Step 10; otherwise, go 

to Step 12 

Step 12. Select first job p from A. Find machine k that assigns 

job p to the next available position on machine k can led 

to minimum TWC.  

Step 13. Set   =   {p}. Assign job p to the next available 

position on machine k, and  update       (     )  

   . Update A=A\{p}.  

Step 14. Set         , and        , preserving their 

ordering. 

Step 15. Add the generated solution   into the solution set by 

setting solution set = solution set∪ {num, ∑  , 

TWC }. 

Step 16. If A={null}, go to Step 17; otherwise, return to Step 9. 

Step 17. Find the schedule from the solution set that has 

minimum ∑   and save its schedule to S. If there are 

more than two solutions that has minimum ∑  , then 

chose the one that has smaller TWC. The number of 

enumerations in this phase equals to n. So far, we have 

num=n(m+n-2)+n=(m-1)n+n
2
. Assuming x=(m-1)n+n

2
.  

3
rd

 phase: Reassign the tardy jobs 

Step 18. Pick the lth (l=1,...,n) job from the job sequence in S 

and find m+n-2 schedules by placing it at all possible 

m+n-2 positions in schedule S without changing the 

relative positions of the remaining n-1 jobs. The 

number of enumerations in this step equals n(m+n-2). 

Step 19. Add the generated n(m+n-2) solutions into the solution 

set by setting solution set = solution set {num, ∑  , 

TWC}, for num=x+1,..., x+ n(m+n-2). So, now we 

have num=(2m-3)n+2n
2
. 

Step 20. Let C be the set of tardy jobs and let π be the schedule 

in solution set{ x, ∑  , TWC}. Initially, set h=0, 

C={null}.  

Step 21. Increase num by 1 and set h=h+1.  
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Step 22. Removes tardy jobs from schedule π, π  solution 

set{x+h, ∑  , TWC} and add those tardy jobs into  C. 

Sort jobs in C by the EDD rule. Update schedule π and 

Cj for all remaining jobs in π.  

Step 23. Select the first job p from C. For schedule π, find 

machine k that assigns job p to the next available 

position on machine k can led to minimum TWC. 

Assign job p to the next available position on machine k, 

and  update       (     )     . Update C=C\{p}. 

Step24. If C={null}, add the generated solution π into the 

solution set by setting solution set = solution set
{num, ∑  , TWC}, go to Step 25; otherwise, return to 

Step 23. 

Step25. If h=n(m+n-2), find all non-dominated solutions from 

solution set and terminate the procedure; otherwise, 

return to Step 21.  

III.  COMPUTATIONAL RESULTS 

In this section, we present several computational results 

regarding the performance of IP model and the WCT_EDDR. 

The IP model was coded in AMPL and implemented in CPLEX 

11.2. The WCT_EDDR was implemented in Visual C++ and 

run on a computer with a 2.5 GHz Pentium Dual-Core E5200 

CPU with 4GB memory. The correlated processing times pij 

were generated based on [2]. The value of wj for each j was 

chosen randomly from the uniform distribution [1, 10]. Release 

dates and due dates were generated in a manner similar to that 

of [14]. We first generated release dates rj from the uniform 

distribution [  
 

 

∑ ∑    
 
   

 
   

 
]. In the next step, we generated 

slack times between due dates and earliest completion times 

from a uniform distribution [  
 

 

∑ ∑    
 
   

 
   

 
] . The earliest 

completion times of job j were estimated by     ̅  where 

 ̅  ∑      
 
   . The due date of job j was then generated from 

   (    ̅ )  [  
 

 

∑ ∑    
 
   

 
   

 
]  α controlled the range of 

release dates  and β controlled the range of due dates. High 

values of α tend to produce widely separated release dates  

while high values of β tend to produce loose due dates  In this 

research  α and  β were set at 0.25 and 0.50, and 0.75. The 

machine correlation factor Γ was set to 0.2, 0.4, and 0.6; the job 

correlation factor Δ was set to 0.4, 0.6, and 0.8.  Since solving 

IP model can be very time consuming, we only tested the IP 

model and our heuristic on 4 machines with 20 jobs. For each 

combination of Γ  Δ  α and β, 10 problem instances were 

randomly generated.  

In order to measure the results, we used number of 

non-dominated solutions, computation times, and a modified 

d  distance based on [15]. The    value is used to evaluate the 

distance between two non-dominated fronts. Let F1 and F2 be 

two non-dominated fronts obtained by a different method. Let 

n1 be the number of solutions in the front F1 and let n2 be the 

number of solutions in the front F2. The modified μ-distance is 

defined as : 

 




2

1

n

i

id

 
where di presents the minimum distance of every point i of 

F2 to the point k (k=1,...,n1) of F1, i.e.,   

 

 𝒊  𝐦𝐢𝐧𝒌 𝟏   𝒏𝟏(√(𝒇𝟏𝒊  𝒇𝟏𝒌)
𝟐  (𝒇𝟐𝒊  𝒇𝟐𝒌)

𝟐  𝒊  𝟏   𝒏𝟐                

 9  

 

f1i represents the first objective value of point i; f2i represents 

the second objective value of point i. Thus the di takes the value 

zero if, for all objectives, point i reaches the value of point k. 

Then    is defined as in [9]: 

 

   

𝟏

𝒏𝟐
∑  𝒊
𝒏𝟐
𝒊  

√(𝒇𝟏    𝒇𝟏 𝒊𝒏)
𝟐 (𝒇𝟐    𝒇𝟐 𝒊𝒏)

𝟐
                               (10) 

 

where f1max=max{f1(x) | xF1
 F2}, f1min=min{ f1(x)| xF1

 F2}, f2max=max{f2(x)|xF1
 F2}, and f2min=min{f2(x)|xF1

 F2}. The smaller the d  value is, the better the quality of its 

corresponding result is.  

Table I shows the performance of heuristic WCT_EDDR and 

IP model for different combination of machine correlation and 

job correlation. Table I shows that the number of 

non-dominated solutions generated by the IP used is about 5.1 

on average, the number of non-dominated solutions generated 

by the WCT_EDDR used is about 3.8. The average distance 

from solutions generated by the IP to the solutions generated by 

the WCT_EDDR is about 0.133. The average computation time 

of the IP is about 177.97 seconds and the average computation 

time of the WCT_EDDR is about 0.006 seconds. As the 

machine correlation Γ or job correlation Δ increasing  the 

computation time of IP increasing.  
 

TABLE I 

THE PERFORMANCE OF THE HEURISTIC WCT_EDDR FOR DIFFERENT 

COMBINATION OF MACHINE CORRELATION AND JOB CORRELATION 

α=β=  5 Non-dominated solutions 
Computational time 

(seconds) μ-distance 

Γ Δ Opt. WCT_EDDR Opt. WCT_EDDR 

0.2 0.4 5.0 3.7 157.87 0.005 0.129 

 
0.6 5.0 3.6 163.02 0.008 0.163 

 
0.8 5.1 3.9 200.26 0.005 0.096 

0.4 0.6 4.7 3.8 167.28 0.005 0.123 

 
0.8 5.0 3.7 186.43 0.005 0.128 

0.6 0.8 5.6 3.8 192.97 0.005 0.159 

Avg. 5.1 3.8 177.97 0.006 0.133 

 

Table II shows the performance of heuristic WCT_EDDR 

and IP model for different release time factor and due date 

factor. Table II shows that the number of non-dominated 

solutions generated by the IP used is about 4.62 on average, the 

number of non-dominated solutions generated by the 

WCT_EDDR used is about 3.63. The average distance from 
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solutions generated by the IP to the solutions generated by the 

WCT_EDDR is about 0.154. The average computation time of 

the IP is about 155.23 seconds and the average computation 

time of the WCT_EDDR is about 0.006 seconds. As the release 

time factor α increases  the average distance from solutions 

generated by the IP to the solutions generated by the 

WCT_EDDR increases  Similarly  as the due date factor β 

decreases, the average distance from solutions generated by the 

IP to the solutions generated by the WCT_EDDR increases. 

 
TABLE II 

THE PERFORMANCE OF THE HEURISTIC WCT_EDDR FOR DIFFERENT RELEASE 

TIME FACTOR AND DUE DATE FACTOR 

 
Non-dominated 

solutions 

Computational time 

(seconds) μ-distance 

α β Opt. WCT_EDDR Opt. WCT_EDDR 

0.25 0.25 4.58 3.55 177.59 0.006 0.184 

 
0.50 5.52 4.23 212.67 0.006 0.097 

 
0.75 5.68 4.28 189.46 0.005 0.099 

0.50 0.25 4.50 3.37 162.76 0.006 0.190 

 
0.50 5.07 3.75 177.97 0.006 0.133 

 
0.75 4.58 3.82 136.45 0.005 0.114 

0.75 0.25 4.00 3.23 135.00 0.006 0.226 

 
0.50 4.15 3.35 116.06 0.006 0.171 

 
0.75 3.48 3.12 89.16 0.006 0.168 

Avg. 4.62 3.63 155.23 0.006 0.154 

We also analyze the results graphically in the objective space, 

as shown in Figs. 2 and 3. [16] stated that a "good 

approximation (solutions) typically consists of a set of diverse 

solutions that are uniformly distributed along the efficient 

frontier, and which are also close to the efficient frontier." Figs. 

2 and 3 both show that the WCT_EDDR can generate a set of 

diverse solutions that are uniformly distributed along the 

efficient frontier generated by the IP. 

 
Fig. 2 Solutions in objective space: 4m20n with Γ=     Δ=  4  α=0.25, 

β=0.25 

 
Fig. 3 Solutions in objective space: 4m  n with Γ=     Δ=  8  α=  5, 

β=  5 

IV. CONCLUSIONS AND FUTURE WORK 

        This research proposes a heuristic WCT_EDDR to find 

non-dominated solutions for scheduling correlated parallel 

machine with release dates to minimize number of tardy jobs 

and total weighted completion time. The computational results 

show that the proposed heuristic is computationally efficient 

and provides solutions of reasonable quality. Future work can 

consider developing memetic algorithm by using WCT_EDDR 

to generate initial non-dominated solutions to tackle the studied 

problem.  
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