

1

Abstract—We consider the problem of scheduling correlated

parallel machines with release times to minimize number of tardy jobs

and total weighted completion time. We consider different levels and

combination of machine correlations and job correlations in the

processing times. We first present a mix integer programming (MIP)

model that can find optimal solutions for the studied problem. Next,

we propose a bi-criteria heuristic that can find non-dominated

solutions for the studied problem efficiently. Computational results

show that the proposed heuristic is computationally efficient and

provides solutions of reasonable quality.

Keywords—Bicriteria, correlation, heuristic, parallel machines,

scheduling

I. INTRODUCTION

In reality, multiple but conflicting objectives are usually

considered when a manager plans the production scheduling.

Hence, managers need to consider multiple objectives and

trying to find a set of good solutions that satisfies all the

considerations. Moreover, we examine correlated parallel

machine scheduling problems since they better reflect real

world manufacturing environments [1]. In this research, we

consider the problem of scheduling n jobs on m correlated

parallel machines to minimize number of tardy jobs and total

weighted completion time (TWC) with release dates. Each job j

has a release date (rj), a correlated processing time (pij) on

machine i, a due date (dj) and a weight (wj). Job preemptions are

not allowed. The number of tardy jobs (∑

) is defined as

Uj=1 if Cj>dj; 0, otherwise. It is often an objective in practice as

it is a measure that can be recorded very easily where Cj is the

completion time of job j. The total weighted completion time

(∑

) gives an indication of the total holding or inventory

costs incurred by the schedule. Following the three-field

notation of [1], we refer to this problem as

 | | ∑ ∑ .

This research considered correlated parallel machine

scheduling problems. The studied correlated parallel machine

scheduling problem is based on [2]. Reference [2] defined nine

cases that considered different levels and combinations of

machine correlations and job correlations for parallel machine

environments. They also proposed processing time generation

schemes for the nine cases. Reference [1] applied mathematical

models on the nine cases defined by [2] to examine whether

1Yang-Kuei, Lin, Department of Industrial Engineering and Systems

Management, Feng Chia University, Taiwan, ROC,
 2Tzu-Yueh, Yin, Department of Industrial Engineering and Systems

Management, Feng Chia University, Taiwan, ROC, E

some problems are more difficult to solve than others.

Reference [1] first applied a mathematical model to solve

correlated parallel machine scheduling problem to minimize

makespan. Next, they used another mathematical model to

solve correlated parallel machine scheduling problem to

minimize total weighted tardiness with release time. Reference

[1] concluded that as the machine and job correlations increase,

the problem instances become more difficult for mathematical

models to solve. This implies that branch-and-bound based

algorithms might have more difficulty solving parallel machine

scheduling problems with correlations than without

correlations.

In the last few decades, more and more researchers have

studied bicriteria parallel machine scheduling problems.

Reference [3] presented a heuristic based on simulated

annealing (SA) and a neighborhood search for scheduling

identical parallel machines to minimize the average flow time

and the number of tardy jobs. Reference [4] suggested a model

for a regular parallel machine scheduling problem to minimize

the sum of machine holding cost and job tardiness cost. They

proposed a heuristic based on a tabu search algorithm to search

optimal or near optimal solutions. Reference [5] proposed a

heuristic based on simulated annealing (SA) to minimize the

total flow-time and the total number of tardy jobs on identical

parallel machines. Reference [6] considered unrelated parallel

machine scheduling problem with non-identical due dates,

ready times, sequence-dependent and machine-dependent setup

times. They proposed a genetic algorithm (GA) to solve this

bi-objective problem to minimize the number of tardy jobs and

the total completion time. Reference [7] considered a

sequence-dependent setup with release times on unrelated

parallel machine scheduling problem. They proposed a

heuristic based on tabu search algorithm (TSA) to minimize the

total weighted completion times and the total weighted

tardiness. The results showed that the proposed TSA can find

near optimal solutions in a short time. Reference [8] studied

unrelated parallel machine scheduling problem. They first

proposed a heuristic (LP-ATC) to minimize the makespan and

the total weighted tardiness for unrelated parallel machine

scheduling problem. Next, they proposed another heuristic

(ATC-bi) to minimize the total weighted completion time and

total weighted tardiness for unrelated machines scheduling

problem. Moreover, [8] proposed a GA to minimize makespan,

total weighted completion time and total weighted tardiness for

unrelated machines scheduling problem. Reference [9]

proposed a heuristic and a tabu search algorithm to find

non-dominated solutions for bicriteria unrelated parallel

machine scheduling problems with release dates. They

Bicriteria Heuristic for Correlated Parallel

Machine Scheduling Problem

1
Yang-Kuei, Lin and

2
Tzu-Yueh, Yin

10th BANGKOK International Conference on Advances in Engineering and Technology (RTET-2018) April 27-28, 2018 Bangkok (Thailand)

https://doi.org/10.17758/EIRAI2.F0418116 5

compared the proposed algorithm with other existing

algorithms. They concluded that the proposed tabu search

algorithm outperformed other algorithms in terms of the

number of non-dominated solutions and the quality of its

solutions. Reference [10] developed a heuristic to solve a batch

scheduling problem on unrelated parallel machines with the

objective of minimizing a linear combination of total weighted

tardiness and the total weighted completion time.

To the best of our knowledge, no research has yet been

published that develops a heuristic to minimize the number of

tardy jobs and total weighted completion time on correlated

parallel machines with release times. The

 | | ∑ ∑ problem is strongly NP-hard

since the task of minimize number of tardy jobs on a single

machine with release time (| | ∑) is already NP-hard in

the strong sense [11]. Since the studied problem is strongly

NP-hard, it is impractical to solve it by using an exact algorithm.

We present a heuristic to find non-dominated solutions for the

 | | ∑ ∑ problem.

Correlated parallel machines environment

According to [1], when both machine and job correlation

factors got involved in generating processing times, the

problems have become difficult for the mathematical models to

solve. This research mainly focusses on Case 9 defined by [2].

Case 9 is one of the most difficult cases for mathematical

models to solve [1]. This implies that branch-and-bound based

algorithms are sensitive to the distribution of the processing

times. Moreover, [1] mentioned that the newly defined

correlated parallel machine scheduling problems by [2] better

fit real world manufacturing conditions and can thus provide

results that better reflect real world scheduling problems.

 Reference [2] used parameters Γ and Δ to control the

relatedness of the generated processing times for the

machine-correlated and job-correlated environments,

respectively. Γ is inversely proportional to the relative

dispersion of processing times between machines, and Δ is

inversely proportional to the relative dispersion of processing

times between jobs. The smaller the Γ or Δ value, the larger the

variation it represents. The Γand Δ values are passed into the

generation scheme and the scheme generates a problem

instance. Case 9: Γ (8) Δ ; job correlation is

greater than machine correlation. Figure 1 shows examples

with 3 jobs on 3 machines for Case 9. The variation of

processing times for each job across the different machines is

smaller than for the three jobs on the same machine. We use

Γ=0.2 ; Δ=0.4 in Fig 1 as an example to explain Case 9.

Assuming jobs are processed manually by human workers, it is

virtually impossible that each worker requires exactly the same

processing time on each job. Similarly, it is also unlikely that

each machine will operate at a constant rate. In fact, small

variations are likely to occur in processing times among

individual machines. If the standard man-hour for processing

job 3 is 60 minutes, operator A (M1) might spend 64 minutes

processing job 3 as opposed to 65 minutes for operator B (M2)

and 60 minutes for operator C (M3). Hence, it would be

reasonable to assume that a job will result in a small dispersion

of processing times with different machines and/or operators.

II. METHODOLOGY

A. Integer Programming (IP) Model

The studied problem can be written as an IP model based on

the time-indexed formulation. The IP model that can generate

the entire set of non-dominated solutions for the studied

problem. The set of solutions provided by the IP serves as a

reference set.

 In the time-indexed formulation, the planning horizon is

discretized into the periods 1, 2,… T where period t starts at

time t-1 and ends at time t. All jobs have to be completed by

time T. We assume ∑ ∑

 . The time

index variable, , is equal to 1 if job j starts on machine i at

time t and is otherwise equal to zero. The IP model for the

studied problem is described below.

▲

▲▲

●

✩
✩

●

●

▲ Job 3

Job 1

Job 2✩

●

M1 M3M2

P
ro

c
es

s i
n
g

 t
im

e

✩

0.2,0.4





▲▲
▲

●

✩

✩

●

●

▲ Job 3

Job 1

Job 2✩

●

0.2,0.6

M1 M3M2

P
ro

ce
ss

in
g

 t
im

e

✩

▲
▲▲

●

✩✩

●
●

▲ Job 3

Job 1

Job 2✩

●

0.2,0.8

M1 M3M2

P
ro

ce
ss

in
g

 t
im

e

✩

▲
▲

▲

●

✩
✩

●
●

▲ Job 3

Job 1

Job 2✩

●

0.4,0.6

M1 M3M2

P
ro

ce
ss

in
g

 t
im

e

✩

▲
▲▲

●

✩✩

●
●

▲ Job 3

Job 1

Job 2✩

●

0.4,0.8

M1 M3M2

P
ro

ce
ss

in
g

 t
im

e

✩

▲
▲▲

●

✩✩

●
●

▲ Job 3

Job 1

Job 2✩

●

0.6,0.8

M1 M3M2

P
ro

ce
ss

in
g

 t
im

e

✩

Fig. 1 Example of Case 9 forms

10th BANGKOK International Conference on Advances in Engineering and Technology (RTET-2018) April 27-28, 2018 Bangkok (Thailand)

https://doi.org/10.17758/EIRAI2.F0418116 6

Objective: ()∑ ∑ (1)

Subject to:

∑ ∑

 (2)

∑ ∑

 ()

 (3)

∑ ∑

 (4)

∑ ∑ ()

 (5)

 (6)

 * +

 (7)

 * + (8)

Equation (1) indicates that the objective is to minimize ∑

and TWC where , - controls the weight of objectives.

Constraint (2) requires that each job can start only at one exact

particular time on only one machine. Constraint (3) ensures that

at any given time on each machine only one job at most can be

processed. Constraint (4) demands that each job cannot be

processed before it is released. Using the time-indexed

variables, the completion time of a job j can be written as

constraint (5). Constraint (6) specifies the tardy jobs where M is

a big number. Constraints (7-8) state the non-negativity and

integrality restrictions.

B. Bicriteria Heuristic

The WCT-NEH is originally developed for solving unrelated

parallel machines with release time to minimize total weighted

completion time [12]. The WCT-NEH combines the ideas of

weighted completion time (WCT) and the

Nawaz-Enscore-Ham (NEH) procedure. The NEH procedure

was proposed by [13] to minimize makespan for the flow shop

scheduling problem. We propose a bicriteria heuristic based on

WCT-NEH and earliest due date (EDD) rule, so it can solve

bicriteria problem. The proposed bicriteria heuristic is

described below.

Bicriteria heuristic WCT_EDDR

1
st
 phase: minimum completion time first

Step 1. Let V denote the set of unscheduled jobs; let ti denote the

total processing times of the jobs that have already been

scheduled on machine i; let S0 denote the set of

scheduled jobs arranged by 1
st
 phase. Initially, set

V={1,...,n}, ti=0 for i=1,...,m, S0={null}.

Step 2. Determine the unscheduled job on machine i
*
 such

that , where

 (

 ()
)

Step 3. Schedule job in the next available position on

machine i
*
. update () . Set

 * +.
Step 4. Repeat Steps 2 to 3 until V={null}. The complete

schedule is saved as S0. Add S0 into the solution set by

setting solution set = solution set {num, ∑ , TWC}

where num=0.

Step 5. Pick the lth (l=1,...,n) job from the job sequence in S0

and find m+n-2 schedules by placing it at all possible

m+n-2 positions in schedule S0 without changing the

relative positions of the remaining n-1 jobs. The number

of enumerations in this step equals n(m+n-2).

Step 6: Add the generated n(m+n-2) solutions into the solution

set by setting solution set = solution set {num, ∑ ,

TWC} where num= … n(m+n-2).

Step 7. Find the schedule from the solution set that has

minimum TWC and save its schedule to S1.

2
nd

 phase: EDD rule combines machine speed

Step 8. Let S denote the set of jobs scheduled by the 2
nd

phase;

let A be the set of unscheduled jobs sorted in EDD rule;

let B=(B1,B2,…,Bm) denote the set of machines sorted

by nondecreasing order of sum of processing time of all

jobs on machine i , (∑

). Initially, set

S2={null}, ti=0, for i=1,…,m, A=(A1,A2,…,An), and k=1.

Step 9. Increase num by 1.

Step 10. Based on jobs order in A, scan jobs from left to right,

and find the first job p that assigns to the next available

position on machine k without being tardy. If job p

exists, then go to Step 13; otherwise, go to Step 11.

Step 11. If k <m, set k=k+1 and return to Step 10; otherwise, go

to Step 12

Step 12. Select first job p from A. Find machine k that assigns

job p to the next available position on machine k can led

to minimum TWC.

Step 13. Set =  {p}. Assign job p to the next available

position on machine k, and update ()

 . Update A=A\{p}.

Step 14. Set , and  , preserving their

ordering.

Step 15. Add the generated solution into the solution set by

setting solution set = solution set∪ {num, ∑ ,

TWC }.

Step 16. If A={null}, go to Step 17; otherwise, return to Step 9.

Step 17. Find the schedule from the solution set that has

minimum ∑ and save its schedule to S. If there are

more than two solutions that has minimum ∑ , then

chose the one that has smaller TWC. The number of

enumerations in this phase equals to n. So far, we have

num=n(m+n-2)+n=(m-1)n+n
2
. Assuming x=(m-1)n+n

2
.

3
rd

 phase: Reassign the tardy jobs

Step 18. Pick the lth (l=1,...,n) job from the job sequence in S

and find m+n-2 schedules by placing it at all possible

m+n-2 positions in schedule S without changing the

relative positions of the remaining n-1 jobs. The

number of enumerations in this step equals n(m+n-2).

Step 19. Add the generated n(m+n-2) solutions into the solution

set by setting solution set = solution set {num, ∑ ,

TWC}, for num=x+1,..., x+ n(m+n-2). So, now we

have num=(2m-3)n+2n
2
.

Step 20. Let C be the set of tardy jobs and let π be the schedule

in solution set{ x, ∑ , TWC}. Initially, set h=0,

C={null}.

Step 21. Increase num by 1 and set h=h+1.

10th BANGKOK International Conference on Advances in Engineering and Technology (RTET-2018) April 27-28, 2018 Bangkok (Thailand)

https://doi.org/10.17758/EIRAI2.F0418116 7

Step 22. Removes tardy jobs from schedule π, π solution

set{x+h, ∑ , TWC} and add those tardy jobs into C.

Sort jobs in C by the EDD rule. Update schedule π and

Cj for all remaining jobs in π.

Step 23. Select the first job p from C. For schedule π, find

machine k that assigns job p to the next available

position on machine k can led to minimum TWC.

Assign job p to the next available position on machine k,

and update () . Update C=C\{p}.

Step24. If C={null}, add the generated solution π into the

solution set by setting solution set = solution set
{num, ∑ , TWC}, go to Step 25; otherwise, return to

Step 23.

Step25. If h=n(m+n-2), find all non-dominated solutions from

solution set and terminate the procedure; otherwise,

return to Step 21.

III. COMPUTATIONAL RESULTS

In this section, we present several computational results

regarding the performance of IP model and the WCT_EDDR.

The IP model was coded in AMPL and implemented in CPLEX

11.2. The WCT_EDDR was implemented in Visual C++ and

run on a computer with a 2.5 GHz Pentium Dual-Core E5200

CPU with 4GB memory. The correlated processing times pij

were generated based on [2]. The value of wj for each j was

chosen randomly from the uniform distribution [1, 10]. Release

dates and due dates were generated in a manner similar to that

of [14]. We first generated release dates rj from the uniform

distribution [

∑ ∑

]. In the next step, we generated

slack times between due dates and earliest completion times

from a uniform distribution [

∑ ∑

] . The earliest

completion times of job j were estimated by ̅ where

 ̅ ∑

 . The due date of job j was then generated from

 (̅) [

∑ ∑

] α controlled the range of

release dates and β controlled the range of due dates. High

values of α tend to produce widely separated release dates

while high values of β tend to produce loose due dates In this

research α and β were set at 0.25 and 0.50, and 0.75. The

machine correlation factor Γ was set to 0.2, 0.4, and 0.6; the job

correlation factor Δ was set to 0.4, 0.6, and 0.8. Since solving

IP model can be very time consuming, we only tested the IP

model and our heuristic on 4 machines with 20 jobs. For each

combination of Γ Δ α and β, 10 problem instances were

randomly generated.

In order to measure the results, we used number of

non-dominated solutions, computation times, and a modified

d distance based on [15]. The value is used to evaluate the

distance between two non-dominated fronts. Let F1 and F2 be

two non-dominated fronts obtained by a different method. Let

n1 be the number of solutions in the front F1 and let n2 be the

number of solutions in the front F2. The modified μ-distance is

defined as :





2

1

n

i

id

where di presents the minimum distance of every point i of

F2 to the point k (k=1,...,n1) of F1, i.e.,

 𝒊 𝐦𝐢𝐧𝒌 𝟏 𝒏𝟏(√(𝒇𝟏𝒊 𝒇𝟏𝒌)
𝟐 (𝒇𝟐𝒊 𝒇𝟐𝒌)

𝟐 𝒊 𝟏 𝒏𝟐

 9

f1i represents the first objective value of point i; f2i represents

the second objective value of point i. Thus the di takes the value

zero if, for all objectives, point i reaches the value of point k.

Then is defined as in [9]:

𝟏

𝒏𝟐
∑ 𝒊
𝒏𝟐
𝒊

√(𝒇𝟏 𝒇𝟏 𝒊𝒏)
𝟐 (𝒇𝟐 𝒇𝟐 𝒊𝒏)

𝟐
 (10)

where f1max=max{f1(x) | xF1
 F2}, f1min=min{ f1(x)| xF1

 F2}, f2max=max{f2(x)|xF1
 F2}, and f2min=min{f2(x)|xF1

 F2}. The smaller the d value is, the better the quality of its

corresponding result is.

Table I shows the performance of heuristic WCT_EDDR and

IP model for different combination of machine correlation and

job correlation. Table I shows that the number of

non-dominated solutions generated by the IP used is about 5.1

on average, the number of non-dominated solutions generated

by the WCT_EDDR used is about 3.8. The average distance

from solutions generated by the IP to the solutions generated by

the WCT_EDDR is about 0.133. The average computation time

of the IP is about 177.97 seconds and the average computation

time of the WCT_EDDR is about 0.006 seconds. As the

machine correlation Γ or job correlation Δ increasing the

computation time of IP increasing.

TABLE I

THE PERFORMANCE OF THE HEURISTIC WCT_EDDR FOR DIFFERENT

COMBINATION OF MACHINE CORRELATION AND JOB CORRELATION

α=β= 5 Non-dominated solutions
Computational time

(seconds) μ-distance

Γ Δ Opt. WCT_EDDR Opt. WCT_EDDR

0.2 0.4 5.0 3.7 157.87 0.005 0.129

0.6 5.0 3.6 163.02 0.008 0.163

0.8 5.1 3.9 200.26 0.005 0.096

0.4 0.6 4.7 3.8 167.28 0.005 0.123

0.8 5.0 3.7 186.43 0.005 0.128

0.6 0.8 5.6 3.8 192.97 0.005 0.159

Avg. 5.1 3.8 177.97 0.006 0.133

Table II shows the performance of heuristic WCT_EDDR

and IP model for different release time factor and due date

factor. Table II shows that the number of non-dominated

solutions generated by the IP used is about 4.62 on average, the

number of non-dominated solutions generated by the

WCT_EDDR used is about 3.63. The average distance from

10th BANGKOK International Conference on Advances in Engineering and Technology (RTET-2018) April 27-28, 2018 Bangkok (Thailand)

https://doi.org/10.17758/EIRAI2.F0418116 8

solutions generated by the IP to the solutions generated by the

WCT_EDDR is about 0.154. The average computation time of

the IP is about 155.23 seconds and the average computation

time of the WCT_EDDR is about 0.006 seconds. As the release

time factor α increases the average distance from solutions

generated by the IP to the solutions generated by the

WCT_EDDR increases Similarly as the due date factor β

decreases, the average distance from solutions generated by the

IP to the solutions generated by the WCT_EDDR increases.

TABLE II

THE PERFORMANCE OF THE HEURISTIC WCT_EDDR FOR DIFFERENT RELEASE

TIME FACTOR AND DUE DATE FACTOR

Non-dominated

solutions

Computational time

(seconds) μ-distance

α β Opt. WCT_EDDR Opt. WCT_EDDR

0.25 0.25 4.58 3.55 177.59 0.006 0.184

0.50 5.52 4.23 212.67 0.006 0.097

0.75 5.68 4.28 189.46 0.005 0.099

0.50 0.25 4.50 3.37 162.76 0.006 0.190

0.50 5.07 3.75 177.97 0.006 0.133

0.75 4.58 3.82 136.45 0.005 0.114

0.75 0.25 4.00 3.23 135.00 0.006 0.226

0.50 4.15 3.35 116.06 0.006 0.171

0.75 3.48 3.12 89.16 0.006 0.168

Avg. 4.62 3.63 155.23 0.006 0.154

We also analyze the results graphically in the objective space,

as shown in Figs. 2 and 3. [16] stated that a "good

approximation (solutions) typically consists of a set of diverse

solutions that are uniformly distributed along the efficient

frontier, and which are also close to the efficient frontier." Figs.

2 and 3 both show that the WCT_EDDR can generate a set of

diverse solutions that are uniformly distributed along the

efficient frontier generated by the IP.

Fig. 2 Solutions in objective space: 4m20n with Γ= Δ= 4 α=0.25,

β=0.25

Fig. 3 Solutions in objective space: 4m n with Γ= Δ= 8 α= 5,

β= 5

IV. CONCLUSIONS AND FUTURE WORK

 This research proposes a heuristic WCT_EDDR to find

non-dominated solutions for scheduling correlated parallel

machine with release dates to minimize number of tardy jobs

and total weighted completion time. The computational results

show that the proposed heuristic is computationally efficient

and provides solutions of reasonable quality. Future work can

consider developing memetic algorithm by using WCT_EDDR

to generate initial non-dominated solutions to tackle the studied

problem.

REFERENCES

[1] Y K Lin “Scheduling efficiency on correlated parallel machine

scheduling problems”, Operational Research. Doi:1

/10.1007/s12351-017-0355-0 ,2017.
[2] Y.K. Lin, M.E. Pfund, and J.W. Fowler, “Processing time generation

schemes for parallel machine scheduling problems with various

correlation structures”, Journal of Scheduling, vol.17, no.6,
pp.569-586, 2014.

https://doi.org/10.1007/s10951-013-0347-8

[3] A.J. Ruiz-Torres, E.E. Enscore, and R.R. Barton, “Simulated annealing
heuristics for the average flow-time and the number of tardy jobs

bi-criteria identical parallel machine problem”, Computers & industrial

engineering, vol.33, no.1-2, pp.257-260, 1997.
https://doi.org/10.1016/S0360-8352(97)00087-9

[4] D. Cao, M. Chen, and G. Wan, “Parallel machine selection and job

scheduling to minimize machine cost and job tardiness”, Computers &
operations research, vol.32, no.8, pp.1995-2012, 2005.

https://doi.org/10.1016/j.cor.2004.01.001

[5] J.N. Gupta, and A.J. Ruiz-Torres, “Generating efficient schedules for
identical parallel machines involving flow-time and tardy jobs”,

European Journal of Operational Research, vol.167, no.3, pp.679-695,

2005
https://doi.org/10.1016/j.ejor.2004.07.015

[6] R. Tavakkoli-Moghaddam, F. Taheri, M. Bazzazi, M. Izadi, and F.

Sassani “Design of a genetic algorithm for bi-objective unrelated
parallel machines scheduling with sequence-dependent setup times and

precedence constraints” Computers & Operations

Research, vol.36,no.12, pp. 3224-3230, 2009.
https://doi.org/10.1016/j.cor.2009.02.012

[7] M.A. Bozorgirad, and R. Logendran, “Sequence-dependent group

scheduling problem on unrelated-parallel machines”, Expert Systems
with Applications, vol.39, no.10, pp.9021-9030, 2012.

https://doi.org/10.1016/j.eswa.2012.02.032

[8] Y.K. Lin, J.W. Fowler., and M.E. Pfund, “Multiple-objective heuristics
for scheduling unrelated parallel machines”, European Journal of

Operational Research, vol.227, no.2, pp.239-253, 2013.
https://doi.org/10.1016/j.ejor.2012.10.008

[9] Y K Lin and H C Lin “Bicriteria scheduling problem for unrelated

parallel machines with release dates”, Computers & Operations
Research, vol.64, pp.28-39, 2015

https://doi.org/10.1016/j.cor.2015.04.025.

10th BANGKOK International Conference on Advances in Engineering and Technology (RTET-2018) April 27-28, 2018 Bangkok (Thailand)

https://doi.org/10.17758/EIRAI2.F0418116 9

https://doi.org/10.1007/s10951-013-0347-8
https://doi.org/10.1007/s10951-013-0347-8
https://doi.org/10.1007/s10951-013-0347-8
https://doi.org/10.1007/s10951-013-0347-8
https://doi.org/10.1007/s10951-013-0347-8
https://doi.org/10.1016/S0360-8352(97)00087-9
https://doi.org/10.1016/S0360-8352(97)00087-9
https://doi.org/10.1016/S0360-8352(97)00087-9
https://doi.org/10.1016/S0360-8352(97)00087-9
https://doi.org/10.1016/S0360-8352(97)00087-9
https://doi.org/10.1016/j.cor.2004.01.001
https://doi.org/10.1016/j.cor.2004.01.001
https://doi.org/10.1016/j.cor.2004.01.001
https://doi.org/10.1016/j.cor.2004.01.001
https://doi.org/10.1016/j.ejor.2004.07.015
https://doi.org/10.1016/j.ejor.2004.07.015
https://doi.org/10.1016/j.ejor.2004.07.015
https://doi.org/10.1016/j.ejor.2004.07.015
https://doi.org/10.1016/j.ejor.2004.07.015
https://doi.org/10.1016/j.cor.2009.02.012
https://doi.org/10.1016/j.cor.2009.02.012
https://doi.org/10.1016/j.cor.2009.02.012
https://doi.org/10.1016/j.cor.2009.02.012
https://doi.org/10.1016/j.cor.2009.02.012
https://doi.org/10.1016/j.cor.2009.02.012
https://doi.org/10.1016/j.eswa.2012.02.032
https://doi.org/10.1016/j.eswa.2012.02.032
https://doi.org/10.1016/j.eswa.2012.02.032
https://doi.org/10.1016/j.eswa.2012.02.032
https://doi.org/10.1016/j.ejor.2012.10.008
https://doi.org/10.1016/j.ejor.2012.10.008
https://doi.org/10.1016/j.ejor.2012.10.008
https://doi.org/10.1016/j.ejor.2012.10.008
https://doi.org/10.1016/j.cor.2015.04.025
https://doi.org/10.1016/j.cor.2015.04.025
https://doi.org/10.1016/j.cor.2015.04.025
https://doi.org/10.1016/j.cor.2015.04.025

[10] O. Shahvari, and R. Logendran, “An enhanced tabu search algorithm to

minimize a bi-criteria objective in batching and scheduling problems on
unrelated-parallel machines with desired lower bounds on batch

sizes”, Computers & Operations Research vol.77, pp.154-176, 2017.

https://doi.org/10.1016/j.cor.2016.07.021
[11] J K Lenstra A R Kan P Bricker “Complexity of machine scheduling

problems” Ann Discrete Math pp 343-36 977

https://doi.org/10.1016/S0167-5060(08)70743-X
[12] Y.K. Lin, and C.W. Lin, “Dispatching rules for unrelated parallel

machine scheduling with release dates”, The International Journal of

Advanced Manufacturing Technology, vol.67, pp.269-279, 2013.
https://doi.org/10.1007/s00170-013-4773-8

[13] M. Nawaz., E.E. Enscore Jr, I. Ham, “A heuristic algorithm for the

m-machine, n-job flow-shop sequencing problem”, Omega vol.11,
no.1, pp.91-95, 1983..

https://doi.org/10.1016/0305-0483(83)90088-9

[14] L. Mönch, H. Balasubramanian, J.W. Fowler, M.E. Pfund, “Heuristic
scheduling of jobs on parallel batch machines with incompatible job

families and unequal ready times”, Computers and Operations Research,

vol.32, pp.2731-2750, 2005
https://doi.org/10.1016/j.cor.2004.04.001

[15] F. Dugardin, F. Yalaoui, L. Amodeo, “New multi-objective method to
solve reentrant hybrid flow shop scheduling problem”, European

Journal of Operational Research, vol.203, pp.22-31,

2010.https://doi.org/10.1016/j.ejor.2009.06.031
[16] W.M. Carlyle, J.W. Fowler, E.S. Gel, B. Kim, “Quantitative

comparison of approximate solution sets for bicriteria optimization
problems”, Decision Sciences, vol.34,pp. 63-82, 2003.

https://doi.org/10.1111/1540-5915.02254

10th BANGKOK International Conference on Advances in Engineering and Technology (RTET-2018) April 27-28, 2018 Bangkok (Thailand)

https://doi.org/10.17758/EIRAI2.F0418116 10

https://doi.org/10.1016/j.cor.2016.07.021
https://doi.org/10.1016/j.cor.2016.07.021
https://doi.org/10.1016/j.cor.2016.07.021
https://doi.org/10.1016/j.cor.2016.07.021
https://doi.org/10.1016/j.cor.2016.07.021
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.1007/s00170-013-4773-8
https://doi.org/10.1007/s00170-013-4773-8
https://doi.org/10.1007/s00170-013-4773-8
https://doi.org/10.1007/s00170-013-4773-8
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/j.cor.2004.04.001
https://doi.org/10.1016/j.cor.2004.04.001
https://doi.org/10.1016/j.cor.2004.04.001
https://doi.org/10.1016/j.cor.2004.04.001
https://doi.org/10.1016/j.cor.2004.04.001
https://doi.org/10.1016/j.ejor.2009.06.031
https://doi.org/10.1016/j.ejor.2009.06.031
https://doi.org/10.1016/j.ejor.2009.06.031
https://doi.org/10.1016/j.ejor.2009.06.031
https://doi.org/10.1016/j.ejor.2009.06.031
https://doi.org/10.1111/1540-5915.02254
https://doi.org/10.1111/1540-5915.02254
https://doi.org/10.1111/1540-5915.02254
https://doi.org/10.1111/1540-5915.02254

