
 

 

 

Abstract—The actual reliability of one-shot systems such as 

missiles can only be determined once they have been used up, therefore, 

estimating the reliability of such system requires a lot of investigation. 

One-shot systems spend most of their life in dormant storage where 

numerous tests are implemented meaning these systems are highly 

reliable in nature because a failure in tests leads to zero reliability which 

is not interesting. The challenge is to estimate the reliability of one-shot 

systems even if few or no failures are observed. This paper summarizes 

several one-shot system reliability modeling and analysis to improve 

the understanding of reliability engineers in estimating the reliability of 

these systems 
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I. INTRODUCTION 

Most reliability papers discuss in detail the different methods 

of determining the reliability of continuous-use systems as well 

as intermittent-use systems but these models used in estimating 

the reliability of such systems cannot be applied to one-shot 

systems which are also called impulse systems. To illustrate 

clearly why methods in predicting the reliability of 

continuous-use systems cannot be used for one-shot systems, 

the assumptions regarding between the two systems will be 

compared.  

The reliability of continuous-use systems is described as the 

number of failures happening over a period of time which is  

usually described as mean time between failures (MTBF). For 

one-shot systems, the failure can only happen once, although, 

there are times wherein the one-shot system fails a test during its 

dormant period which is not part of this paper because the 

reliability of those systems is quite low which does not need any 

modeling. Another problem with reliability models of 

continuous-use systems is that the reliability of such systems 

are measured during their operating time because most failures 

occurring as a result of the system reaching its MTBF. Unlike 
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one-shot systems like missiles, when delivered to a specified 

target, does not have time to be repaired if it fails during its flight 

[1]. Furthermore, continuous-use systems, in general, fail 

because of the operation of the system whereas one-shot 

system failures are dominated by birth defects and 

time-dependent defects. Birth defects, which is common at the 

beginning of life of the system, are flaws of the system which 

were not identified during the product acceptance stage can be 

fixed after tests have identified these flaws and at the end of life 

of the one-shot system, time-dependent defects start to affect 

the reliability of the system more than the birth defects because 

the former is growing.  

II. CONCEPTUAL MODEL OF RELIABILITY 

Several models have been used in modeling the reliability of 

one-shot systems. For instance, the reliability of the one-shot 

systems like nuclear weapons was incorrectly modeled as the 

bathtub curve which was pointed out by reference [2]. In order to 

correctly model the reliability of one-shot systems, the concept 

of actual reliability and estimated reliability should be well 

understood first by the reliability engineers dealing with these 

types of systems. Note that the system, from now on, refer to 

one-shot systems unless specified otherwise. 

A. Actual Reliability Model 

The actual reliability of one-shot systems cannot be measured 

because it is the natural reliability of the system. They can only 

be theoretically visualized and cannot be determined until the 

use of the one-shot system. The importance of the actual 

reliability is that it can be inferred when there are changes that 

are happening in the system.  

 

  
Fig. 1 Changes in actual reliability of a system 

 

The first graph (A) shows that the actual reliability of the 

system will increase when a defect is found and fixed. The slope 

of the change in reliability of the system entirely depends on 

how significant the defect is to the system. In general, the first 

few tests reveal the critical defects thus the change in reliability 

of the system after fixing these defects is bigger compared to 
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succeeding fixes. The next graph (B) shows that reliability will 

decrease when a defect is introduced to the system. These 

defects are obviously undesirable but they cannot be prevented 

from happening because they are accidental mistakes. An 

example would be when a fix is not correctly implemented hence 

affecting the reliability of other components to decrease or when 

an upgrade is carried out and because of unforeseen 

circumstances, the reliability of the system also decreases. This 

is important to note because making changes to the system 

might induce a defect thus changes must be monitored so that 

their impact on the reliability of the system is positive. The last 

graph (C) shows that a time-dependent defect is growing which 

is lowering the reliability of the system. These defects are 

usually because of environmental stimuli such as vibration, 

temperature, humidity, etc. and component aging. These factors 

must be considered in determining the end-of-life of the 

one-shot systems 

B. Estimated Reliability 

Estimating the reliability of the system is the most challenging 

part of being a reliability engineer because this will ultimately 

decide if the system will fail or not when the system is needed to 

be deployed. Although high estimated reliability of the system is 

practically good, the reliability of the system essentially dictates 

failure or not. This means that the error between the estimated 

reliability and actual reliability is as important as increasing the 

reliability of the system. 

C. Relationship of Actual and Estimated Reliability 

In this section, the different factors affecting how the 

actual and estimated reliability is discussed. Normally, the 

actual reliability of the system would be lower than the 

estimated reliability to because the assumption is that there 

are no defects present in the system even though there are 

defects present but since the tests do not show the defect, it  is 

assumed that they are not in the system. 

 

 
Fig. 2 Relationship of actual and estimated reliability  

 

Finding a defect, as shown in Figure 2A, will decrease the 

estimated reliability because a birth defect is detected while the 

actual reliability does not change because the defect is still not 

fixed. When a defect is found, the estimated reliability improves 

because it approaches the actual reliability of the system. After 

the birth has been fixed the both estimated and actual reliability 

of the system increases which is illustrated in Figure 2B. As 

time goes on, the reliability of the components of the system 

deteriorates as seen from the actual reliability of the system in 

Figure 2C and by doing tests, the estimated reliability can 

converge to the actual reliability when tests are done. Lastly, 

when testing of the system reveals no failure, the estimated 

reliability of the system increases even though the actual 

reliability is not changing (see Figure 2D). Successes achieved 

during the testing of the sys tem does not certainly tell that the 

reliability of the system is high, it might also tell that the testing 

program is not adequate. 

D. Reducing the Error between Actual and Estimated  

In the previous section, the more successful tests can actually 

be more dangerous in estimating the actual reliability of the 

system when the estimate for the reliability is greater than the 

actual reliability of the system. In order to prevent a discrepancy 

in estimating the reliability of the system, it can be assumed that 

defects are present in the system, therefore, lowering the 

estimate of the reliability which is better than a higher reliability 

estimate with a lower actual reliability. Also, this enables more 

tests to be more effective not only in detecting defects but als o 

improve the estimate. 

 

 
Fig. 3 Reducing level of confidence of the estimated reliability  

III. METHOD OF ESTIMATING RELIABILITY 

Different methods have been used in estimating the reliability 

of one-shot systems. The simplest method is using the normal 

distribution approximation but can only be used where the 

probability of failure is in the middle. A notable method in 

approximating the reliability of components of a system is the 

beta-binomial lower bound which is: 

        (1) 

                         (2) 

where P(X < y) is the confidence level or probability that the 

number of successes X is greater than the number of failures y; r 

is the reliability of the system and; n is the number of tests done 

on the components. It can be noted here that (2) will be used 

when there are no failures and (1) otherwise. By using (2) above, 

reference [3] were able to get the mean and variance of the 

reliability of the component following the beta-binomial 

distribution which are: 

                               (3) 

                               (4) 
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where E[r] is the mean reliability and var(r) is the variance of the 

distribution. Note that these equations can only be used when 

there are no failures in component testing. If failures are present, 

equation (1) is used to define the probability distribution to 

approximate the mean and variance of the sample. 

A. Procedure in Estimating Reliability of One-Shot Systems 

After computing for the mean and variance of the reliability of 

each component in the system, the overall system mean and 

variance of reliability can be computed by applying parallel and 

series system analysis which is discussed in detail in the next 

sections [4]. To get the probability distribution of the reliability 

of the system, the following equations are used to get 

parameters α and β: 

 

                      (5) 

 

                 (6) 

 

where rs is the reliability of the system. These parameters are to 

be used in a beta distribution β(rs;α,β) which is used to determine 

the confidence level needed by system requirements. To 

visualize the method clearly, see chapter 4 where an example is 

demonstrated. 

B. Series System 

 
Fig. 4 Series system 

 

The reliability of a system with components in series 

connections can be computed using the equation of mean and 

variance proposed by reference [5] which approximates the 

probability distribution of the system: 

 

                              (7) 

 

                (8) 

 

where ni is the number of units tested for the i
th
 component. The 

above equation assumes that there are no failures that happened 

during component testing. 

C. Parallel System 

The reliability of a system with components in parallel was 

also from derived from the assumption that there were no failures 

in component testing. The mean and variance of the system can 

be computed as: 

                       (9) 

       (10) 

 

 
Fig. 5 Parallel system 

D. Complex System 

Complex systems are just a combination of series and parallel 

subsystems which can be simplified as one whole system by 

using equations 7 and 8 for subsystems connected in series or 

equations 9 and 10 for subsystems connected in parallel. A 

complex system is given below as an example that is to be 

analyzed in the next chapter. 

 

 
Fig. 6 Reduction of a complex system into simpler modules 

 

As can be seen from Figure 6a, components 1 and 2 are 

connected in series thus can be simplified as module A while 

components 4 and 5 are connected in parallel thus can be 

simplified as module B. The original system can be drawn just 

like in Figure 6a. The simplified system can be further reduced to 

Figure 6c because the component 3 and module B are in series 

thus can be called module C. Subsequently, module D and 

component 6 are parallel simplifying them together into module 

D. Finally, the system is made up of two modules connected in 

series. When combining modules, the following equations  must 

be used in estimating the mean and variance of complex system: 

 

                                  (11) 

 

            (12) 

 

                         (13) 

 

  (14) 

 

E. Network System 

Some systems are not easily reducible into a single system 

just like complex systems. These systems are called network 

systems because they work together and simplifying a part of 
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the network system will lead to a different system. In solving 

network systems, the flow of how the components are analyzed 

to produce a reducible system just like a complex system. Figure 

7 illustrates how network systems are analyzed. 

 
 

Fig. 7 Network system analysis [6] 

From the figure 7, it can be observed that a network system can 

be interpreted into two complex systems. Figure 7A shows that 

components 1 and 2 can be interpreted as series connection thus 

making the two parallel with the other components connected in 

series. Figure 7B shows that the same system can be interpreted 

as components 1 and 4 connected in parallel thus making them 

connected in series with the other components connected in 

parallel. Both models show different systems thus it is critical to 

choose which of the two is to be used but it is highly 

recommended to simulate both systems to be confident in the 

model. 

IV. EXAMPLE SIMULATION 

For a confidence level of 90%, calculate the reliability of the 

one-shot system (Figure 6) using the component data given in 

Table 1. Also, calculate the number of successful trials needed to 

have a reliability of 0.95 with 90% confidence level with and 

without using the component data as a prior. 

 
TABLE I 

COMPONENT DATA OF SYSTEM IN FIGURE 6 

i  n i yi ri
 Var(ri) 

1 15 0 0.9375 3.447x10
-3

 

2 15 0 0.9375 3.447x10-3 

3 20 0 0.9524 2.061x10-3 

4 25 0 0.9615 1.370x10-3 

5 25 0 0.9615 1.370x10-3 

6 20 0 0.9524 2.061x10
-3

 

 

Using the concept of complex systems, the system can be 

simplified into different modules which are summarized in Table 2 

below. Note that the equations 11 and 12 are used for modules in 

series while equations 13 and 14 are used for parallel modules. 

 
TABLE II 

MEAN AND VARIANCE OF THE SIMPLIFIED MODULES 

Step Module ri Var(ri) 

1 
A 0.8789 6.071x10-3 

B 0.9985 5.929x10-6 

2 C 0.9509 2.061x10
-3

 

3 D 0.9977 1.387x10-5 

5 System 0.8769 0.006x10-3 

α 14.82731 β 2.08235 

 

The probability distribution can be approximated by 

computing the parameters of beta distribution (α and β) using 

equations 5 and 6. The probability distribution is approximated 

as β(r; 14.82731, 2.08235). Figure 8 shows the cumulative 

probability distribution of the reliability of the system where the 

reliability at 90% confidence level is estimated using 

interpolation.  

 

 
Fig. 8 Cumulative probability distribution of system  

 

The reliability of the system at 90% confidence is predicted to 

be 0.76998 which can be verified by simulating it in Microsoft 

excel where the reliability of the components follow equation 2 

and system reliability data is arranged consecutively. The 

number on the 1000th place (0.76941) is considered the reliability 

at 90% confidence because there were 10,000 data points 

simulated. The number of trials needed for the system to achieve 

0.95 reliability with 90% confidence without prior component can 

be computed using equation 2 thus getting n = 45. Using the 

component data, the solution can be solved using the beta 

approximation accounting to additional successful tests: β (0.95, 

14.82731+n, 2.08235) where n can be solved and is equal to 63 

which means that the system reliability is lowered by the 

component reliability data.  

Additionally, the system reliability of one-shot systems with 

component testing failure can be obtained by using Equation 1 

to model the probability distribution of the components and 

approximate the mean and variance using: 

 

                       (15) 

 

                   (16) 
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where r is the reliability and P(r) is the probability that system’s 

reliability is r.  These equations can be used if the probability 

function is discretized. 

 

 
Fig. 7 System level reliability  

V. CONCLUSION 

Estimating the reliability of one-shot systems conceptually 

does not necessarily need more tests. Successful testing will 

probably increase the estimated reliability of the system but will 

diverge with the actual reliability of the system if the estimated 

reliability is formulated using a high confidence level, therefore, 

estimation must always be more conservative to account for 

defects not identified during testing. The method of estimating 

the reliability of one-shot systems might be difficult to compute 

but with the use of the right program, estimating the reliability 

will be easier. Also, using prior data in estimating how many 

tests should be conducted will either reduce or increase the tests 

needed to prove that the system has the desired level of the 

reliability which can either reduce the cost of tests or suggest to 

perform more component testing rather than system testing to 

achieve the desired level of reliability of the system. 
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