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Abstract: The damping property of glass fiber reinforced polymer matrix composites with two different fiber 

strand diameters, orientations and layup sequence are investigated and an attempt is made to improve the 

damping of fiber reinforced polymer matrix composites by generating more number of interfaces. It is found that 

the damping will be improved at the negligible expense of stiffness, by generating more number of interfaces i.e 

reducing the fiber diameter from 27.2µm to 18.3µm without compromising the size of the composite specimen 

and the volume fraction of the fiber within the specimens. The loss factors are calculated from experimental 

results by using impulse technique. The same properties have also been evaluated theoretically by performing the 

two phase and three phase damping analysis using Ni and Adam’s, Specific Damping Capacity (SDC) model, and 

the Interfacial Adhesion Model (IAM) respectively. 

Keywords: Flexural vibration, composite laminates, specific damping capacity and loss factor. 

1. Introduction  

Damping of vibrations is an important aspect in the field of dynamic analysis of the engineering structures. 

The fiber reinforced composite materials are ideal structures wherever high strength-to-weight and stiffness-to-

weight ratios are demanded. Composite materials are often tailored to fulfill the desired stiffness and strength by 

changing lay-up and fiber orientations. The ability to tailor a material to its job is one among the most vital 

advantages of a composite material over a normal material. Therefore the research and development of 

composite materials becoming increasingly important for the weight sensitive application such as design of 

aerospace, automotive and marine structures also the change in its design aspects has grown tremendously 

within the past few decades. Damping in the structures is of many types, energy dissipation like material 

damping, aerodynamic damping and viscous damping etc. The current paper considers a discussion on the work 

related to material damping. The energy can be dissipated from the composite materials by different ways such 

as: the fiber-matrix interaction, visco-elastic behavior of the polymer composites, temperatures, damages, inter-

faces, and flexible bonding at fiber-matrix interface. 

The energy can be dissipated from materials by different ways such as fibre orientation, visco elastic 

behavior of the PMC, temperatures, damages, interfaces, flexible bonding at fiber matrix interphase. In this work 

considered the interfaces for increasing the material damping. By creation of large number of interface regions 

the loss factor can be increased i.e.: fibre diameter is reduced without change in size of the laminate. For this 

work I considered fibers with diameters. If the fiber diameter decreases, the number of fiber-matrix interfaces 

increases, which leads to high energy dissipation when the specimen is excited. The Loss factor or specific 

damping capacity values have been found in the two different strands with the same fiber matrix proportions of 

the laminates. 
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The analytical approach for the estimation of loss factors as a measure of microscopic damping is formulated 

under two different concepts the first is 2-phase microscopic damping and the second 3-phase microscopic 

damping. In which the loss factor of the lamina, a material system constitute of fiber and matrix considered as 

two phases and its damping nature determined by different models such as Adams and bacon, Adams and Maher, 

Ni and Adams and Lin- Tsai model. The loss factor of the 3-phase (an interface as an additional phase) is then 

computed by Wesley Gu,‖interfacial adhesion model‖to 2014 International Conference on Artificial Intelligence 

& Manufacturing Engineering (ICAIME 2014). The Conference is a primary international forum for scientists 

and technicians working on topics relating to Artificial Intelligence & Manufacturing Engineering. In the 

template, the Main Header1 will be of ―Times New Roman‖ Font of 14 pt. each. 

2. Theoretical Calculation of the Damping   

2.1. Three Phase Damping Model  

Contributions Damping can be increased by increasing the number of interfaces; it can be calculated by 

using three phase (fiber, matrix and interface) damping model. A three phase relation has been given in Eq.1. It 

contains the two-phase (fiber and matrix) loss factors and the interfacial loss factor of the composite materials, in 

which the two-phase loss factors are termed as system loss factor.  Hence, the three phase relation has been used 

here to calculate the loss factor of the composite i.e the system and the interfacial loss factors are calculated 

separately. 
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  Where ηc = the loss factor of the composite, 

              ηi  = the loss factor attributable to the interface,  

              ηs = the loss factor attributable to the system (fiber +matrix),  
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2.2. Ni and Adams Theory  

The loss factors and the moduli of the system are evaluated only from the properties of the fiber and matrix. 

And also it can be effectively used to calculate the above properties of the system (the fiber and matrix) in the 

longitudinal, transverse and the longitudinal–transverse directions as given in the following section using rule of 

mixture. It is known that the term SDC (Ψ) defines the ratio between energy dissipated to the total energy in 

cycle of vibration. The SDC model adopted here was developed by Ni and Adams assuming that the stress-

independent damping coefficients are applicable at low, normal amplitudes, and a symmetric layup of the 

laminate. This final assumption leads to no midplane strains under classical laminate plate theory. In addition to 

neglecting σy and σxy, Ni and Adams also argued that the transverse strain ey, in each lamina will be much 

smaller than the longitudinal and shear strains and could be neglected results eqs.  

Where [C] is the normalized flexural compliance of the laminate, [Qk] is the stiffness of the kth lamina, p is 

the total number of plies present in the laminate and Wk a weighting factor based on the position of the kth 

lamina within the laminate. 

2.3. Interfacial Damping 

The force required to overcome the frictional force in the longitudinal direction due to the radial pressure 

2
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Where Ff is the axial force acting at the fiber, rf is the fiber radius, and  is the friction coefficient between fiber 

and matrix. Similarly, if the interfacial deboning is caused by the force  Ff during the stretching of the composite, 

then p in Equation  can be replaced by the interfacial shear strength of the composite,  , which is that necessary 

to pull the fiber from the matrix. 
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By integrating the above equation (11) we will get 
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From the above equation the deboning length can be written as 
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For a cantilever beam, if there is an interfacial deboning, it likely occurs at the free end of the beam because 

shear strain (and shear stress) is high at that location. In this case, the force balance is 

The maximum debonding region is caused by the maximum load on fiber 
max

fF . When an alternating. Load is 

applied to the composite, such as in the case of vibration 
3 /12cI bh

 
        (14) 

When the beam is deflected by an end-applied load P, the shear component of the load can be obtained  
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Where Ic is the moment of inertia of the composite beam. Therefore, the maximum load carried by fiber 
max

fF  

corresponding to the maximum bending load, Pmax, can be expressed quantitatively as 
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The energy dissipation in a cycle is small compared to the maximum stored elastic energy W of the system, 

which is true for most vibration damping situations, the interfacial damping factor, tan in , may be estimated by 

the following equation  

 

Assuming the stress in the fiber gradually approaches the maximum value (or P gradually reaches to Pmax,) 

during a vibration cycle, interfacial deboning and slippage between fiber and matrix will dissipate energy 

because the integration is performed over a complete cycle about the origin, the energy dissipated per cycle is 

given by 
max

02 fW F x 
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The potential energy W for a sample subjected to strain can be calculated as follows 
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Where L is the sample length, and Ic, Ac, and Ec are the stress, cross-sectional area, and Young’s modulus of the 

composite, respectively. For a cantilever beam 
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By substituting Equations (4.1.69) and (4.1.71) into Equation (4.4.67), and by knowing that, 3 /12cI bh  we 

obtain 
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Where b is the sample width and h is sample thickness. 

(22) 
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  Where i  is the interfacial loss factor 

     Ec is the longitudinal modulus of the system (fiber and matrix),  

     b,  h and l are the width, depth and length of the single fiber specimen, 

     Τ,  is the interface shear strength,  

     df   is the fiber diameter. 

    As the current study mainly concentrates on the effect of the variation of the two different diameters of the 

fiber, the diameters have been accurately measured, using the SEM images captured from these two categories 

of specimens in which the sizes are measured around 18.3 μm and 27.2 μm for the small and large fiber 

diameters. 

     For a small and large diameters of fiber the interfacial loss factors can be written as per a small fiber diameter 
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For a large fiber diameter 
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     Where,
si

  and
li

  are the interfacial loss factors of the small and large fibers respectively 

scE  and
lcE are the longitudinal moduli of the system (fiber and matrix) with the small and large fibers 

respectively,  

sf
d And

lf
d are the diameters of the small and large fibers respectively.  

     Since the interface damping equations provided in Eqs74. Are applicable only for the 0
o
 orientation of the 

fiber in the longitudinal direction ,the same has been extended to the different orientations (30
o
, 45

o
, 60

o
 and 90

o
) 

of the fiber as well .As the longitudinal modulus values are   decreased with  the orientations of the fiber, those 

modulus values are calculated based on the transformation relations provided in the Eq of The interfacial loss 

factors with respect to the different orientations of the small and large fibers have been calculated using the 

following equations.  
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Where,
( 0 90)

is to




,  
( 0 90)l to

i





are the interfacial loss factors of the small and large fibers in longitudinal direction 

and the different orientations of fibers. 

 After the calculations of the system and interfacial loss factors (ηs and ηl) of the small and large fiber 

diameters, the theoretical loss factors (ηc) are calculated from Eq (25) and (26). 
 

TABLE I: The Material Properties of the Fiber and Matrix for the Small and Large Fibre Diameters 

 

3. Results and Discussions  

    The damping value can only be achieved at the expense of stiffness. Since a high damping value is desired to 

be obtained at a smaller expense of the stiffness value, it is done by generating more number of interfaces (i.e. 

more number of the same can be created by reducing the strand diameter/diameter of the fiber, without changing 

the volume fraction of the fiber and the matrix) under different stacking sequences of the fiber, which leads to a 

larger energy dissipation. It is evident from Figs below that the different strand diameters of the fiber under 

different stacking sequences greatly influence its dynamic behavior .It is also noted that the loss factor and the 

natural frequency/stiffness are high in the unidirectional ply of the fiber at 90
o
 and  0

0
  orientations  respectively. 

 

Materials 
Longitudinal 

Modulus (GPa) 

Transverse 

Modulus 

(GPa) 

Shear 

Modulus 

(GPa) 

Longitudinal 

Loss factor % 

Transverse 

Loss factor % 

Longitudinal 

Transverse Loss 

factor % 

Poisson's 

Ratio 

Small dia. D= 
17µm 

60.54 60.54 25.44 0.1749 0.1749 0.09533 0.2 

Large dia. 

D=27µm 
61.07 61.07 25.44 0.1749 0.1749 0.09533 0.2 

Matrix Fiber  2.737 2.737 1.015 1.3989 1.3989 1.5788 0.374 
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Fig1: Three phase loss  factors for small   fibrediameters 

 

  
Fig. 2 : Interfacial  loss factors for small and  large fibre 

diameters 

 

       Fig. 3 : Two phase loss factors for small  fibre  

diameters 

  

4. Concluions 

    Investigating the dynamic behavior of GFRP composites, aiming to improve the damping without 

compromising much on the magnitude of stiffness/frequency. Two different diameters of the glass fiber with 0
0
, 

30
0
, 45

0
, 60

0
and 90

0
 orientations in the polymer matrix were fabricated. After carrying out detailed studies of the 

frequency and the damping experimentally and theoretically, it is concluded that the laminate with the small 

diameter and 45
0
 orientation of the fiber exhibits better results. Even this small reduction in diameter has caused 

approximately an average of 18% increase from the overall damping (3phasedamping) model. In case the fiber 

diameter differences are high, the percentage increase in the damping can also be raised. After evaluating the 3-

phase damping i.e. including the interface damping, the variation between the theoretical and the experimental 

damping values has been significantly reduced. 
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