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Abstract: The general method for proving the existence of homoclinic trajectories in dissipative systems is 

developed. The applications of this method to Lorenz-like systems: Lorenz, Shimizu–Morioka, Lu and Chen 

systems are demonstrated. A criterion for the existence of a homoclinic trajectory within a given family of 

differential equations (Fishing principle) is presented. New numerical algorithm for the approximation of a 

homoclinic point in parameters space is constructed. The comparison with Kaplan–Yorke and Shilnikov results is 

made. In this paper, we study Lu’s system. First, we control the chaotic behavior of Lu’s system to its equilibrium 

points using linear feedback control and adaptive control method. Finally, we study chaos synchronization of Lu’s 

system by using active control methods. 
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1. Introduction  

    The homoclinic trajectories are very important in the bifurcation theory and in the study of the passage to 

chaos [1–8]. The present work deals with the problem: to find conditions that ensures the existence of 

homoclinic trajectories in dissipative systems. Consider the extension of Tricomi problem [9-14], which can be 

described in the following way. Chaos in control systems and controlling chaos in dynamical systems have both 

attracted increasing attention in recent years. A chaotic system has complex dynamical behaviors that possess 

some special features, such as being extremely sensitive to tiny variations of initial conditions, having bounded 

trajectories in the phase space. Controlling chaos has focused on the nonlinear systems such as a Lu’s system.  
 

Lu’s system was first introduced in [2] which is described by     
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Where , ,x y z  are state variables, , ,a b c  are positive constants. 
 

   The objectives of this paper are as follows. Firstly, to give sufficient conditions of parameters that make 

equilibrium points of the Lu’s system to be asymptotically stable by using linear feedback control and adaptive 

control methods. Finally, we investigate adaptive synchronization for the Lu’s system using active control. 
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2. Synchronization of the Lu’s system  

Consider two nonlinear systems: 
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    Where , , , [ , ], [ , ], 1,n r n n r n n nx y f g C u C r               is the set of non-negative 

real numbers. Assume that (3.1) is the drive system, (3.2) is the response system, and ( , , )u t x y  is the control 

vector. 
 

Definition 2.1. Response system and drive system are said to be synchronic if for any initial conditions 
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2.1 Synchronization of the Lu’s system using active control 
 

    In this section, we assume that there are two Lu’s systems such that the drive system (with the subscript 1) 

drives the response system (with the subscript 2). The drive and response systems are given, respectively, by  
.
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and 
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    We have introduced three control functions 1 2 3( ), ( ), ( )u t u t u t  in (2.4). Our goal is to determine the control 

functions 1 2 3( ), ( ), ( )u t u t u t . We define the errors system as the difference between system (2.3) and the 

controlled system (2.4). Let us define the state errors between the response system (2.4) and the drive system 

(2.3) as 
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By subtracting (2.3) from (2.4) and by using the notation in (2.5), we have 
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We define active control functions 
1 2 3( ), ( ), ( )u t u t u t  as follows 
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Hence, the error system (2.6) becomes 
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    The error system (2.7) is a linear system with control input 
1 2 3( ), ( ), ( )V t V t V t  as functions of the error 

, , .x y ze e e  There are a number of possible choices for the controls 1 2 3( ), ( ), ( ).V t V t V t  We choose 
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Where A  is a 3 3  constant matrix. Let the matrix A  is chosen in the following form 
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    Since eigenvalues of A  are , , ,a b c    where , ,a b c  are positive constants. It follows that , ,x y ze e e  

converge to zero as t  tends to   and hence the Lu’s systems (2.3) from (2.4) are synchronic.  

 

Numerical Simulations 
 

     Fourth-order Runge-Kutta integration method is used to solve two systems of differential Equations. (2.3) and 

(2.4) with time step size 0.01. The values of parameters in (2.3) are chosen as 5, 10, 0.5a b c    to ensure 

the chaotic behavior of Lu’s systems. The initial conditions of the drive system are 

1 1 1(0) 0.65, (0) 0, (0) 0    x y z    and the initial conditions of the response system 

are 2 2 2(0) 0.2, (0) 0.1, (0) 0.1.    x y z    Thus, the initial values of the error system are 

(0) 0.69, 0.25, 0.15.x y ze e e     Fig. 1-3 show that the synchronization is occurred after applying active 

control at 10.t   Fig. 4 show that the state errors ( , , )x y ze e e of Lu’s systems of equations with the active 

control activated. 

 
Fig. 1 The state 

1 2,x x  of the coupled Lu’s systems of equations with the active control activated. 
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Fig. 2 The state 

1 2,y y  of the coupled Lu’s systems of equations with the active control activated. 

 
Fig. 3 The state 

1 2,z z  of the coupled Lu’s systems of equations with the active control activated. 

 

Fig. 4 The state errors ( , , )x y ze e e  of the coupled Lu’s systems of equations with the active control activated. 

3. Conclusions 

    In this paper, we first give sufficient conditions for stability of equilibrium points of linear feedback controls 

which control the chaotic behavior of Lu’s system to its equilibrium points. Finally, we give active controls 

which synchronize Lu’s system. Numerical Simulations are also given to verify results we obtained. 
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