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Abstract—The available scores to predict patients’ outcomes in 

specific settings generally present low sensitivities and specificities 

when applied to intensive care units’ (ICUs) populations. 

Advancements in analytical techniques, notably Ultra-High 

Performance Liquid Chromatography- Mass Spectrometry (UHPLC-

HRMS) transformed biomarker identification, enabling a 

comprehensive profiling of biofluids, including serum. In the current 

work, untargeted metabolomics, utilizing UHPLC-HRMS serum 

analysis, was performed on 16 ICU patients, categorized as either 

discharged (n=8), or deceased (n=8) in average seven days post 

sample collection. Linear discriminant analysis (LDA) or principal 

component analysis (PCA)-LDA models involving different 

metabolite sets were developed, enabling to predict patients’ 

outcomes in the ICU with 92% accuracy and 83% sensitivity on 

validation datasets. These results highlight the advantages of 

UHPLC-HRMS as a platform capable of providing a set of clinically 

significant biomarkers to predict patients’ outcome. 

 

Keywords— Biomarkers, Intensive care unit, Predictive models, 

Metabolomics, Mass Spectrometry 

I. INTRODUCTION 

Precision medicine has emerged as a novel approach in 

healthcare, aiming to tailor medical treatment to the 

characteristics of each patient. No other setting demonstrates 

the potential of precision medicine as the intensive care unit 

(ICU) where critically ill patients require complex and often 

time-sensitive interventions. Effective ICU patient 

management relies on the ability to predict outcomes 

accurately, guiding clinicians in making timely and informed 

decisions to improve patient care and outcomes [1]. 

Biomarker discovery plays a pivotal role in this endeavor by 
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identifying molecular indicators that can predict patients’ 

outcomes. These biomarkers can provide valuable insights 

into the underlying mechanisms of disease progression, 

response to treatment, and prognosis, thereby facilitating 

personalized therapeutic strategies in the ICU setting [2]. In 

recent years, advances in analytical techniques, particularly 

Ultra-High Performance Liquid Chromatography Mass 

Spectrometry (UHPLC-HRMS), have revolutionized 

biomarker identification and characterization. UHPLC-HRMS 

offers unparalleled sensitivity, resolution, and throughput, 

enabling comprehensive profiling of complex biological 

samples with exceptional accuracy and precision [3]. Thus, 

precision medicine can be easily and seamlessly integrated as 

a new technique for patient management. For instance, routine 

blood draws can be leveraged for liquid biopsy [4], quickly 

generating a patient's metabolomic profile [5]. Analyzing this 

data with predictive algorithms against a comprehensive 

metabolomic database can optimize therapeutic interventions 

in real-time, leading to an improved and more efficient 

management of patients and medical resources [6]. Thus, the 

present work aims to identify serum metabolomic biomarkers 

using UHPLC-HRMS, with the goal of predicting mortality in 

critically ill patients. 

II. METHODOLOGY 

A. Study Design 

Blood samples from 16 male ICU patients at Hospital São 

José (Lisbon, Portugal), who tested positive for  severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), through 

positive real-time polymerase chain reaction testing were 

collected and analyzed according to legal and ethical 

requirements (Ethics Commission project approval: 

1043/2021, 20/05/2020). Clinical data was obtained from the 

hospital's medical records. The cohort was categorized by ICU 

outcome, discharged or deceased. 

B. Serum Metabolome 

Serum was obtained from blood, by centrifugation at 3000 

rpm for 10 min, and kept at -80 °C until analysis. The 

metabolome acquired from serum was analyzed with an 

UHPLC-HRMS platform as outlined by Fonseca et al. [7]. 

Briefly, samples were submitted to two chromatographic 

modes, reverse phase (RP) and hydrophilic interaction liquid 

chromatography (HILIC). For RP, a constant temperature of 

40 °C, and a gradient elution was used at a flow rate of 250 
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μL/min as follows (mobile phase A, 0.1% formic acid in 

water; mobile phase B, 0.1% formic acid in acetonitrile): 

0.0−0.5 min 0% B, 0.5−1.5 min 0−20% B, 1.5−4.0 min 

20−60% B, 4.0−6.0 min 60−100% B, 6.0−9.0 min 100% B, 

9.0−10.0 min 100−0% B, and 10.0−15.0 min 0% B. For 

HILIC, a constant temperature of 40 °C was used with a flow 

rate of 250 μL/min, a gradient elution of 10 mM ammonium 

acetate in water containing 0.1% acetic acid (A) and 10 mM 

ammonium acetate in acetonitrile containing 2% water and 

0.1% acetic acid (B) was applied as follows: 0−2 min 90% B, 

2−6 min 90−70% B, 6−9 min 70−30% B, 9−13 min 30% B, 

13−18 min 30−90% B, 18−22 min 90% B. MS acquisition 

parameters were set as follows: capillary voltage of 3 kV 

(ESI−) or 4.5 kV (ESI+), end plate offset of 500 V, nebulizer 

of 4.0 bar, dry gas flow of 8.0 L/min, and dry heater 

temperature of 200 °C. Spectral acquisition was performed 

with an absolute threshold of 25 counts per 1000, with a m/z 

range from 50 to 1300 and a 3 Hz spectra rate. Three full 

scans and one auto MS/MS scan were performed for each 

sample and for each mode. Quality control samples were 

analyzed every 6h for consistent chromatographic resolution 

and spectrometer detection over time. MS data was pre-

processed with Data Analysis (versions 4.1, 4.4, and 4.5, 

Bruker Daltonics), converted to mzXML using ProteoWizard 

MSConvert [8], and uploaded to the XCMS server [9], where 

data processing, pairwise sample comparison, multimodal 

analysis (independent of separation and acquisition modes), 

and global meta-analysis were performed. 

C. Multivariate Data Analysis 

Principal component analysis (PCA), linear discriminant 

analysis (LDA), and PCA-LDA models based on metabolites 

identified by UPLC-HRMS were developed using The 

Unscrambler X, version 10.4 (CAMO software AS, Oslo, 

Norway). Samples were divided into 75% train (calibration) 

and 25% test (validation) sets. This was repeated four times 

using a rotation scheme to ensure no overlap between 

samples. To assess the models’ performance, indicators such 

as accuracy, sensitivity, specificity, and precision were 

provided. 

D. Other Statistical Analysis 

Continuous variables were presented as mean ± standard 

deviation (S.D.), and categorical data as absolute frequencies 

and percentages, using IBM SPSS Statistics software, version 

26 (IBM Corp., New York, United States). For spectral bands 

and MS intensities, comparisons between groups were 

performed using Welch's t-test, in the XCMS platform. 

Statistical significance was set for two-sided p-values of less 

than 0.05. 

III. RESULTS AND DISCUSSION 

Serum samples were obtained from 8 discharged and 8 

deceased patients in an average of five days after ICU 

admission. Discharged patients did not require invasive 

mechanical ventilation (IMV), relying on high-flow 

oxygenation (HFO),  whereas deceased patients who died on 

average seven days after ICU admission, were under IMV at 

the time of sample collection (Table I).  

 
TABLE I 

OVERVIEW OF PATIENTS’ CHARACTERISTICS IN BOTH GROUPS, STRATIFIED 

BASED ON THEIR ICU OUTCOME. 

Clinical Variables 

Patients’ Outcome 

Discharged 

(n=8) 

Deceased  

(n=8) 

Age, years (mean ± S.D.) 52.25 ± 11.42 63.25 ± 5.73 

Body Mass Index, kg/m2 (mean ± S.D.) 30.29 ± 6.63 29.36 ± 3.59 

Arterial hypertension;  n (%) 2 (25.0) 3 (37.5) 

Obesity;  n (%) 2 (25.0) 2 (25.0) 

Diabetes;  n (%) 2 (25.0) 3 (37.5) 

Dyslipidemia;  n (%) 2 (25.0) 2 (25.0) 

Chronic respiratory disease; n (%) 2 (25.0) 3 (37.5) 

HFO; n (%) 8 (100.0) 2 (25.0) 

Days with IMV (mean ± S.D.) - 10.63 ± 6.32 

Days in the ICU (mean ± S.D.) 7.38 ± 2.77 12.50 ± 4.84 

 

The employed UHPLC-HRMS analysis involved two 

column types, namely RP and HILIC, to enhance metabolite 

coverage. HILIC and RP chromatography display a 

complementary capacity to resolve metabolites based on their 

polarity. Their combined use allows a clearer separation of 

metabolites across a wider polarity and hydrophilicity range, 

resulting in a more comprehensive analysis [10]. Thus, 

applying both methods yielded approximately 23,000 m/z 

peaks per group, with roughly half resulting from each column 

type, underscoring the complementary nature of the two 

chromatographic techniques. Pairwise comparisons made 

between samples from discharged and deceased patients 

revealed a total of 52 features (i.e., m/z peaks), corresponding 

to 24 metabolites significantly different between the two 

groups (p-value <0.0001) (Table II).  

 
TABLE II 

DIFFERENTLY EXPRESSED METABOLITES DETECTED BY UHPLC-HRMS 

(P<0.0001) BETWEEN DISCHARGED AND DECEASED PATIENTS. 

Metabolites 

Up Regulated Fold change a 

Thiamin 7.76 

α-L-iduronate 5.22 

Octanoate 4.23 

α,α-trehalose 3.84 

3'-dephospho-CoA 3.83 

6-methoxy-3-methyl-2-all-trans-decaprenyl-1,4-

benzoquinol 
3.61 

4-acetamidobutanoate 3.52 

Flavin mononucleotide 3.20 

4-hydroxyphenylpyruvate 2.68 

Ribose-1-arsenate 2.66 

S-adenosyl-L-homocysteine 2.48 

Homovanillate 2.11 

Xylitol 1.89 

N-acetyl-β-neuraminate 1.76 
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Pyruvate 1.62 

α-D-glucose 1.61 

(R)-lactate 1.38 

Down Regulated Fold change a 

Bilirubin 2.44 

Fumarate 2.39 

(R)-mevalonate 1.84 

4-methyl-2-oxopentanoate 1.80 

6-phospho-D-glucono-1,5-lactone 1.68 

3-ureido-isobutyrate 1.49 

(3R,5S)-1-pyrroline-3-hydroxy-5-carboxylate 1.47 

a. Change trend of group C energy intensities. 

 

Seven molecules were downregulated in the samples from 

deceased patients, in comparison to those from discharged 

ones. These included organic acids and organic carbonic acids 

(i.e., (3R,5S)-1-pyrroline-3-hydroxy-5-carboxylate and 3-

ureido-isobutyrate), carbohydrate 6-phospho-D-glucono-1,5-

lactone, the hydroxy fatty acid (R)-mevalonate, keto acid 4-

methyl-2-oxopentanoate, fumarate and bilirubin. On the other 

hand, deceased patients had higher results in molecular 

families of carbohydrates (α-D-glucose; α,α-trehalose; ribose-

1-arsenate; xylitol; N-acetyl-β-neuraminate), lipid molecules 

(S-adenosyl-L-homocysteine; octanoate; 6-methoxy-3-methyl-

2-all-trans-decaprenyl-1,4-benzoquinol), benzenoids (4-

hydroxyphenylpyruvate; homovanillate), the carboxylic acids 

4-acetamidobutanoate, keto acid pyruvate, hydroxy acid (R)-

lactate, nucleotide flavin mononucleotide and 3’-dephospho-

CoA, constituent of glycosaminoglycans α-L-iduronate and 

vitamin thiamine. 

Employing PCA to the 24 identified metabolites retrieved 

good distinction between deceased and discharged patients 

emerged in the PC1 versus PC2 score-plot (Fig. 1a). This 

highlights the potential of these metabolites to predict the 

patients’ outcome. Furthermore, 13 metabolites were 

highlighted by the PCA’ loadings (Fig. 1b). On the negative 

side of PC1, (R)-mevalonate, 4-methyl-2-oxopentanoate and 

(3R,5S)-1-pyrroline-3-hydroxy-5-carboxylate were identified, 

while on the positive side of PC1, α-D-glucose and (R)-lactate 

were detected. Furthermore, on the positive side of both PC1 

and PC2, the following metabolites were identified: pyruvate, 

N-acetyl-β-neuraminate, S-adenosyl-L-homocysteine, 4-

hydroxyphenylpyruvate, xylitol, α-L-iduronate, 

homovanillate, and 4-acetamidobutanote.  

In line with the current study, other authors have reported 

similar findings concerning the 13 metabolites highlighted by 

the PCA’ loadings. Tang et al. [11], for example, reported a 

down-regulation of (3R,5S)-1-pyrroline-3-hydroxy-5-

carboxylate, a metabolite involved in the arginine and proline 

metabolism, among severe coronavirus disease 2019 

(COVID-19) patients in comparison to healthy controls. (R)-

mevalonate down-regulation in deceased patients can be 

indicative of induced muscle weakness cause by prolonged 

hospitalization [12]. This molecule can have a dual 

mechanism, as it can be recruited by viral infected mechanism 

to support viral replication and at the same time plays an 

immunoregulatory role [13]. Concerning 4-methyl-2-

oxopentanoate, an intermediate in the leucine degradation 

pathway, its down-regulation in deceased patients aligns with 

previous findings demonstrating its negative association with 

COVID-19 severity [14]. When it comes to the metabolites 

that were up-regulated in deceased patients, S-adenosyl-L-

homocysteine has emerged as a biomarker for severe sepsis 

and systemic inflammatory response syndrome in the ICU. 

Elevated levels of this biomarker, linked to tissue hypoxia, 

predict disease severity and outcome [15]. (R)-lactate and 

pyruvate are associated with unfavorable clinical outcomes 

and an increased risk of ICU mortality, particularly when 

present in high concentrations. In ICU settings, elevated blood 

lactate and lactate-to-pyruvate ratio are commonly observed, 

stemming from metabolic dysregulations, including hypoxia 

from ischemic events in septic patients and other phenomena 

such as the Warburg Effect [16]. In the context of disease 

severity-driven bioenergetic changes, α-D-glucose correlates 

positively with increased morbidity, and unfavorable clinical 

outcomes [17]. Stress-induced hyperglycemia is a prevalent 

occurrence in the ICU environment, attributed to a range of 

factors encompassing inflammatory responses and 

neuroendocrine disturbances, contributing for instance to 

insulin resistance [18]. N-acetyl-β-neuraminate levels have 

been associated with chronic kidney disease severity, end-

stage kidney disease, increased heart failure risk, and adverse 

outcomes in heart failure patients [19], [20]. Considering 

homovanillate, while reduced levels have been reported in 

patients with traumatic brain injury [21], other studies have 

described elevated levels of this metabolite in non-survivor 

patients. Examples include critically ill children experiencing 

complicated severe malnutrition [22], as well as acute critical 

ill patients diagnosed with nosocomial pneumonia [23] and 

septic shock [24]. In a serum multiomics study, 4-

hydroxyphenylpyruvate was identified as part of a predictive 

signature for COVID-19 severity [25]. The buildup of 4-

hydroxyphenylpyruvate may be related to vitamin C 

depletion, as it serves as a cofactor in the breakdown of 4-

hydroxyphenylpyruvate into homogentisate within the 

tyrosine metabolic pathway. This can occur in conditions such 

as hypovitaminosis or when vitamin C is redirected to other 

biochemical reactions, involving processes related to the 

activity of reactive oxygen species and the various 

inflammatory responses observed in conditions like COVID-

19 and septic shock [26], [27]. Xylitol, a common component 

in parenteral nutrition, has been associated with COVID-19 

severity, showing increased levels in critical cases, along with 

e.g., other sugar alcohols, arabinose, ribose and trehalose [28]. 

LDA or PCA-LDA models were developed using different 

sets of metabolites to predict the patients’ outcome. 

Succinctly, sets employing all identified metabolites (n=24), 

metabolites from the PCA’s influence plot (Fig. 1b), 

metabolites with the lowest p-values, and the highest fold 

change between the two groups of patients (Table II), were 

considered. In total, seven metabolite sets and corresponding 
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LDA/PCA-LDA models were developed (Table III). Overall, 

good predictive models were developed, with the best 

performances achieving 92% accuracy and 83% sensitivity on 

the validation dataset. This model incorporated seven 

metabolites with the highest fold-change, all of which were 

up-regulated in deceased patients. 

 
Fig. 1 PCA from the 24 metabolites differently expressed between 

discharged and deceased patients (a); Correlation loadings from both 

PC1 and PC2, highlighting the most influential metabolites. The plot 

contains two ellipses that indicate how much variance is considered. 

The outer ellipse is the unit-circle and indicates 100% explained 

variance. The inner ellipse indicates 50% of explained variance (b). 

 

Thiamine, or vitamin B1, which is a cofactor in the energy 

metabolism, exhibited the highest fold-change. Deficiency or 

low levels of this metabolite have been associated with 

increased disease severity and poorer outcomes [29]. The up-

regulation of thiamine among deceased patients is most likely 

attributed to the administration of thiamine-rich diets or direct 

supplementation in the ICU. α-L-iduronate, the metabolite 

with the second-highest fold-change, which was also 

highlighted in the PCA analysis, has been associated with 

neurological complications in septic events [30]. Elevated 

iduronate levels might be linked to the degradation of 

glycosaminoglycan dermatan sulfate, a process associated 

with SARS-CoV-2 infection, both through the virus's direct 

impact on tissues and indirectly through inflammatory 

mechanisms [31]. Octanoate, also included in the model, acts 

as the main endogenous substrate for lipoic acid in lipoate 

biosynthesis, having a protective role in ischemic events, 

coagulopathy and COVID-19-induced endothelial disorders 

[32], [33]. Thus, higher octanoate serum levels could be 

indicative of lipoate synthesis blockade, leading to worse 

outcomes. Furthermore, this metabolite is considered a 

potential biomarker for the severity of acute respiratory 

distress syndrome [34]. α,α-Trehalose is a disaccharide, 

hydrolyzed into D-glucose in the small intestine. It is a 

common ingredient in some aliments and pharmaceutical 

products. As previously observed, high sugar serum  levels 

exhibit a positive correlation with increased morbidity, 

prolonged hospitalization, and unfavorable clinical outcomes 

[35]. 3’-Dephospho-CoA serves as a precursor to coenzyme A 

during the pantothenate biosynthesis process that takes place 

in the cell's cytosol. Elevated serum levels of this metabolite 

may suggest cell leakage resulting from cellular damage, a 

characteristic observed in patients with greater SARS-COV-2 

severity [36]. The sixth metabolite that was included as a 

predictive variable in the model, is 6-methoxy-3-methyl-2-all-

trans-decaprenyl-1,4-benzoquinol. This hydroquinone 

participates in ubiquinol biosynthesis and is a precursor to 

ubiquinol-10 (CoQ-10), which is an essential cofactor in the 

electron transport chain of the phosphorylative oxidation 

system, exhibiting anti-inflammatory properties [37]. The last 

metabolite incorporated in the model, which was also 

highlighted in the PCA analysis, was 4-acetamidobutanoate. 

Elevated levels are associated with hepatorenal dysfunction 

and increased mortality in cirrhosis patients [38]. 

IV. CONCLUSION 

Serum metabolomics can represent an essential platform for 

identifying biomarkers for disease diagnosis and, in this 

instance, outcome, especially within the highly diverse critical 

care population in ICUs. The discovery of new biomarkers 

through metabolomics will permit the development of 

pathophysiological profiles enabling the creation of new 

prognostic/diagnostic tools base on innovative approaches 

with higher precision and efficacy. Although this research 

presents a reduced sample size, we point out the possibility to 

develop classification models for patient mortality with an 

average sample collection of seven days until patients’ death. 

This achievement highlights the sensibility of patients’ 

metabolome analysis. In the future we aim to reproduce this 

analysis with a larger sample size, as this work will serve as a 

guiding point towards what metabolites we should be looking 

for. By validating these results, it will be possible to translate 

these findings into a clinical context. 
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TABLE III 

 DIFFERENTLY EXPRESSED METABOLITES DETECTED BY UHPLC-HRMS (P<0.0001) BETWEEN DISCHARGED AND DECEASED PATIENTS. 

Best calibration and validation results are highlighted in bold. PCAs include discharged (blue squares) and deceased (green circles) patients. Regarding LDA, 

deceased patients were considered true positives. 
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Sensitivity 100% 83% 

Specificity 100% 100% 

Precision 100% 100% 
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