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Abstract— Pressure ulcers, commonly referred to as pressure 

injuries, are prevalent skin injuries that occur in hospitalized patients. 

This paper investigates the utilization of deep learning-based models 

to detect human body parts from pressure heatmaps captured by 

sensor sheets. The primary contribution involves training and fine-

tuning a human body parser capable of analyzing binary, gray-level, 

and colored heatmaps representing body pressure. The fine-tuned 

body parser exhibits satisfactory accuracy for the analysis of pressure 

ulcers. Furthermore, an action recognition architecture based on deep 

learning is applied to analyze the movement of each body part. This 

innovative approach establishes a reliable criterion for making 

informed decisions regarding the likelihood of pressure ulcers 

developing in organs subject to higher pressure and reduced 

movement. 

 

Keywords— Artificial Intelligence, Pressure Ulcer, Deep 

Learning, Pressure Heatmap, Human Parsing, Action Recognition.  

I. INTRODUCTION 

The prevalence of pressure ulcers or injuries is growing at 

an alarming rate, being recognized as one of the most common 

chronic medical conditions in hospitals. While different 

terminologies exist for these conditions, such as pressure 

injury (PI) in Australasia, the US, and Canada, this paper will 

refer to them as pressure ulcers (PUs) [1,2].  

As defined by the European Pressure Ulcer Advisory Panel 

(EPUAP), the National Pressure Injury Advisory Panel 

(NPIAP), and the Pan Pacific Pressure Injury Alliance 

(PPPIA), PUs are characterized as 'Localized damage to the 

skin and underlying soft tissue usually over a bony 

prominence or related to a medical or other device. They can 

present as intact skin or an open ulcer and may be painful. 

These injuries are generally caused by intense and/or 

prolonged pressure, or in combination with shear [3,4]. 

PUs are chronic wounds arising from continuous pressure 

over time, leading to ischemia of the underlying skin structure 

[5]. These injuries most frequently occur at bony prominences 

such as the sacral area and the heel. Various factors contribute 
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to the formation of PUs, including prolonged contact with a 

bed or chair without frequent repositioning, exposure to urine 

or stool, medical conditions like diabetes that affect blood 

flow, injuries that limit body positioning, and the patient's 

nutritional status or medications. PUs are associated with 

tissue damage resulting from sustained mechanical loading, 

namely deformations in compression, tension, or shear, or a 

combination of these loading modes [5, 6].  

This paper proposes research methodologies aimed at 

enhancing future investigations in predicting PU risks. 

Digitalization in healthcare can improve diagnostics and 

predictions of health issues. Particularly for PUs, this potential 

was highlighted by Ch. Shi et al [7] in their comprehensive 

review of over 156 studies focusing on the digitalization of 

wound care management. 

Despite rigorous prevention measures, PUs can still occur. 

The risk of developing PUs during hospitalization is three 

times greater than the risk of a car accident [4]. Pressure or 

tissue deformation interrupting blood flow can lead to the 

death of healthy skin, muscle, or fat tissue. The different 

categories or stages of PUs, summarized by the 

EPUAP/NPIAP/PPIA [3], are defined based on the ulcer's 

depth and the type of tissue affected. A higher-stage ulcer 

indicates more profound tissue damage and possibly a more 

severe injury [8]. 

There are six categories of pressure ulcers/injuries such as: 

Category/Stage I: Nonblanchable Erythema Intact skin with 

non-blanchable redness of a localized area. Category/Stage II: 

Partial Thickness Skin Loss Partial thickness loss of dermis 

presenting as a shallow open ulcer with a red-pink wound bed,  

Category/Stage III: Full Thickness Skin Loss - Full 

thickness tissue loss. Subcutaneous fat may be visible, but 

bone, tendon or muscle are not exposed. Category/Stage IV: 

Full Thickness Tissue Loss - Full thickness tissue loss with 

exposed bone, tendon, or muscle. Unstageable: Depth 

Unknown – Full-thickness tissue loss in which the base of the 

ulcer is covered by slough (yellow, tan, gray, green, or brown) 

and/or eschar (tan, brown or black) in the wound bed. 

Suspected Deep Tissue Injury: Depth Unknown Purple or 

maroon localized area of discolored intact skin or blood-filled 

blister due to damage of underlying soft tissue from pressure 

and/or shear. The area may be preceded by tissue that is 
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painful, firm, mushy, boggy, warmer, or cooler as compared 

to adjacent tissue. 

PUs can appear in several areas such as the back or sides of 

the head, rims of the ears, shoulders, hipbones, lower back, 

backs or sides of the knees, heels, ankles, and toes. Certain 

patient factors, such as age and comorbidities like diabetes, 

can slow the healing of pressure injuries. Therefore, some 

wounds may not heal before a patient's death, creating a 

significant economic burden for healthcare services. PUs are 

painful and susceptible to infection, necessitating vigilant 

monitoring by medical staff. 

Non-invasive wound monitoring techniques, such as 

imaging, are preferred to mitigate patient discomfort. These 

techniques enable an accurate analysis of wound features 

without contact. Mobility and pressure are two key factors in 

the formation of bedsores. This paper introduces a new patient 

analysis technique using a pressure map of the patient's body. 

A sensor sheet placed underneath the patient allows for 

continuous monitoring of mobility and pressure. This 

approach provides a non-intrusive, continuous monitoring 

facility and respects privacy laws. 

However, interpreting the pressure heatmaps presents 

challenges, including: 

1. Understanding the relationship between pressure output 

and the patient's body figure 

2. Matching each body part with the pressure heatmap 

3. Predicting which body parts are static or sufficiently 

mobile 

4. Integrating these factors into the standard decision-

making process for bedsores 

This paper addresses the first two issues, with the remaining 

two, pertaining to decision-making, to be considered in future 

studies. 

We employed a deep learning-based body-parser, trained 

on binarized and gray-level heat-map outputs, to predict body 

parts from the pressure heatmap. The model demonstrated 

accuracy comparable to imaging in predicting the patient's 

position and body part. We also undertook a localized analysis 

of each body part's pressure using the body-parser, enabling 

the identification of body areas enduring more pressure and 

those sensitive parts requiring individual examination. The 

sequence of pressure heatmaps was used to monitor the 

movement and displacement of body parts over time. This 

novel, fine-tuned human parser can be integrated into standard 

routines to predict pressure ulcers more effectively. 

To estimate the mobility of the whole body and each body 

part, we utilized a Conv2D+LSTM model. This approach 

allows for distinguishing between body parts with acceptable 

mobility and those that remain static. 

The rest of this paper is structured as follows: Section II 

reviews the related work, Section III discusses different 

categories of pressure injury assessment using image 

processing, including wound segmentation, measurement, 

tissue classification, and healing prediction. We also include a 

discussion of other types of skin wounds from the selected 

papers to broaden the wound imaging analysis techniques. 

Section IV outlines deep learning techniques used in 

biomedical image processing. Section V discusses the utility 

of deep learning for assessing pressure injuries efficiently 

using image processing. Section VI concludes the paper, and 

finally, Section VII suggests directions for future research. 

II.   LITERATURE REVIEW 

This section reviews some relevant works regarding human 

parser algorithms and pressure ulcer detection methods. 

A. Approaches to Pressure Ulcers 

A study by S. Caggiari et al. in 2021 [9] demonstrated that 

pressure mapping technology could be employed to assess the 

risk of developing a pressure ulcer. This is especially crucial 

for individuals with spinal cord injuries, as their movements 

are typically limited to small-scale motions. Therefore, 

pressure distribution can be utilized as a measure of 

movement. They successfully verified that it is possible to 

predict posture and mobility in a sleeping patient through 

continuous pressure monitoring combined with the application 

of AI algorithms. In the present study, we additionally 

employed body segmentation, as it plays a significant role in 

preventing pressure ulcers, particularly for patients admitted 

to intensive care units. 

B. Human Parser Models 

Tao Ruan et al. [10] proposed a human parsing method 

called CE2P to segment human body parts. The paper 

identifies several useful properties, such as feature resolution, 

global context information, and edge details, and carries out 

thorough analyses to understand how to leverage them to 

benefit the human parsing task. These useful properties 

ultimately yield a simple yet effective Context Embedding 

with Edge Perceiving (CE2P) framework for single human 

parsing. 

In another work, Peike Li et al. [11] put forward a new 

human parsing method known as SCHP for segmenting 

human body parts. This method uses ResNet101 with 

ImageNet pretrained weights. To address the problem of 

learning with label noise, the researchers introduced a 

purification strategy, known as Self-Correction for Human 

Parsing (SCHP), to progressively improve the reliability of the 

supervised labels and the learned models. 

In a different approach, Henry M. Clever et al. [12] 

proposed a 3D Human Pose and Shape Estimator. Their 

physics-based method simulates human bodies at rest on a bed 

equipped with a pressure-sensing mat. They also presented 

PressurePose, a synthetic dataset with 206K pressure images 

with 3D human poses and shapes, and PressureNet, a deep 

learning model that estimates human pose and shape given a 

pressure image and gender. Despite being trained solely on 

synthetic data, PressureNet performed well with real data from 

participants in diverse poses. 

Ye Liu et al. [13] presented a multi-scale structure-aware 

network for robust human parsing. The proposed network, 
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named MSSA-Net, harnesses multi-scale features and joint 

structural cues in a coarse-to-fine strategy for effective human 

parsing. MSSA-Net also employs a novel structure-aware loss 

function to enhance the segmentation accuracy of challenging 

regions, such as limb junctions and fine-grained parts. 

C. Pressure Ulcer Prediction Using Image Processing 

T. Chen et al. [14] presented an automated pressure ulcer 

classification method based on an adaptive region growing 

and fuzzy support vector machine (ARF-SVM). This method 

extracts the features of the pressure ulcer regions using a 

multiscale adaptive region-growing algorithm and employs a 

fuzzy SVM for classification. The proposed method achieved 

an accuracy of 95.5% on a dataset of 200 pressure ulcer 

images. 

III. METHODS 

Informed by the literature review and utilizing a physical 

sensor sheet, we introduce a novel approach for human body 

segmentation using collected data. Initially, we prepared the 

necessary dataset within the MLOPs pipeline by performing 

body segmentation on RGB images. This process resulted in a 

comprehensive dataset, comprising the sensor sheet data and 

its corresponding segmented body. The model was trained on 

this provided dataset. Subsequently, we trained the dataset 

using ResNet101 to learn body segmentation from the sensor 

sheet's binarized and gray-scale converted 2D data. Finally, 

we derived the pressure of each body part from the sensor 

sheet data and the novel deep learning model, which predicts 

the user's body position from the pressure heatmap. In this 

section, we detail the various datasets used to train the distinct 

stages of our algorithm. 

A. Human Parsing Datasets 

For the first step, we require a pre-trained network to parse 

the body in standard images. We consider three popular 

datasets with distinct labeling systems. 

LIP [15] is the largest single-person human parsing dataset, 

comprising over 50,000 images. This dataset primarily focuses 

on complex real-world scenarios. LIP consists of 20 labels 

such as Hat, Hair, Glove, Sunglasses, Dress, Coat, Socks, 

Pants, Scarf, Skirt, Face, and so forth. 

ATR [16] is another large single-person human parsing 

dataset with over 17,000 images. It places greater emphasis on 

fashion AI. ATR includes 18 labels like Hat, Hair, Belt, Left-

shoe, Right-shoe, Face, Left-leg, Right-leg, Left-arm, Right-

arm, Bag, Scarf, among others. 

Pascal Person Part is a smaller single-person human parsing 

dataset with over 3,000 images. This dataset is particularly 

focused on body parts segmentation. Pascal Person Part has 7 

labels: Background, Head, Torso, Upper Arms, Lower Arms, 

Upper Legs, and Lower Legs. 

   
a       b       c       d 

 

Fig 1. (a) normal image. (b) LIP output. (c) ATR output. (d) Pascal 

output. 

B. Bodies at Rests Dataset 

The Pressure Pose real dataset comprises 10 males and 10 

females with 1K labeled real pressure images and paired 

heatmap mats of size 64 x 27 [17,18]. 

 

  
a       b 

Fig 2. (a) normal image. (b) pressure map 

C. Our generated Dataset 

For the purposes of this research, we utilized a sensor sheet 

on the patient's bed to collect the necessary data to train the 

deep learning model. The sensing portion of the real pressure 

mat does not cover the entire mattress. We measured a non-

sensing border of 6 cm on the sides of the bed and 9 cm at the 

top and bottom. The synthetic pressure mat covers the entire 

bed (68 x 33), but only an inner subset (64 x 27) that 

represents the sensing area of the pressure image array is 

recorded. This dataset includes 14K RGB images and 

unpaired heatmap mats. 
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a      b 

Fig 3. (a) normal image. (b) pressure map 

IV. OUR APPROACH 

In this section, we delineate the steps involved in using a 

body parser to segment different body parts from heatmap 

images. 

A. Initial Results 

The Human Parser ResNet101 [19] Network is designed to 

convert RGB images into parsed body images. However, 

when binary or grayscale heatmap images are used as inputs, 

this network does not perform optimally. The outcome of this 

process is displayed in Figure 4. 

 

   
a       b      c 

Fig 4. (a) normal image. (b) normal image output. (c) binary image 

output. 

B. Binary Fine-tuned Results 

We employed the Human Parser to transform RGB images 

into parsed body images. Additionally, we converted RGB 

images into binary to generate a paired dataset comprising 

binary images as inputs and segmented images as outputs. 

Following this, we fine-tuned the Human Parser model using 

the paired dataset to create a binary segmentation converter. 

The results of this process are illustrated in Figure 5. This new 

Human Parser model was fine-tuned by altering the model's 

input and making certain modifications to the output layer. 

 

 

 
a         b     c      d 

Fig 5. (a) binary image. (b) binary image output. (c) binary heat map. 

(d) binary heat map output. 

C. Gray-scale Fine-tuned Results 

To attain improved results, we used grayscale heatmap 

images as inputs in a paired dataset. The Human Parser model 

was then fine-tuned once more with this new paired dataset to 

create a grayscale heatmap-to-segmentation converter. The 

results from this process are depicted in Figure 6. 

 

    
                               A      b     c      d 

Fig 6. (a) normal image. (b) normal image output. (c) heat map. (d) 

heat map output. 

D. Pressure Ulcer Detection for Body Parts 

Upon acquiring parsed heatmap images, each body part can 

be analyzed to detect potential pressure ulcer issues. The 

pressure on each body part is scrutinized individually, with the 

maximum amount of pressure recorded in that specific body 

region being selected as the representative value. Thereafter, 

by setting an appropriate threshold, we can identify and report 

body parts that are subjected to abnormal pressure. The results 

from this analysis are displayed in Figure 7. 
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a     b         c     d 

Fig 7. (a) normal image. (b) heat map. (c) parsed image. (d) heat map 

output. 

V. RESULTS 

To conduct an in-depth analysis of the trained deep learning 

models, we employed the mIOU (mean Intersection over 

Union) metric. This was used to compare the performance of 

the proposed models against the segmented body output. The 

mIOU metric provides a comprehensive measure of the 

models' segmentation performance. Table 1 presents the 

results of this comparison. Notably, the accuracy achieved 

using gray-level input data from the sensor sheet was about 

0.97% (mIOU above 0.5), indicating a satisfactory level of 

precision for the body segmentation task.  

 
TABLE I 

THE MIOU RESULT OF THE TRAINED MODEL ON THE SENSOR SHEET DATA 

 
mIOU 

mIOU with 0.5 threshold 

Subhead 

Our Dataset 

(Binary) 
0.56 0.82 

Our dataset 

(Grayscale) 
0.63 0.97 

VI.  CONCLUSION 

In this paper, we propose a deep lear ning-based human 

parser for analyzing body pressure tasks. This parser 

constitutes a significant advancement over existing methods 

and sets a new standard. The self-co rrection mechanism 

utilized in our approach is a versatile strategy that can be 

integrated into any framework, leading to additional 

performance improvements. 

The findings of this study will be instrumental in 

developing a pressure ulcer prediction platform as a primary 

pose management system. By performing body segmentation 

and pressure analysis, we examine the maximum pressure 

exerted on each body part and the duration of the pressure 

presence, factors that directly influence the risk of developing 

pressure ulcers. 

In future research, our aim is to enhance our method to 

achieve superior results for human parsing tasks involving 

images and videos of body pressure. Our forthcoming 

endeavors will concentrate on precise measurement and 

predictive analysis of body movements, which can be 

segmented into different organs to devise the most effective 

method for predicting pressure ulcers.  

VII. FUTURE WORKS 

The current research proposes a deep learning-based human 

parser for the analysis of body pressure tasks, marking a 

significant improvement over existing methods and 

establishing a new benchmark. The self-correction mechanism 

incorporated in our method is a universal strategy that can be 

applied to any framework, potentially leading to performance 

enhancements. 

The outcomes of this st udy will be applied to the 

development of a pressure ulcer prediction platform as a 

foundational pose management system. By conducting body 

segmentation and pressure analysis, we scrutinize the 

maximum pressure on each body part and the duration of 

pressure presence, which has a direct bearing on the risk of 

pressure ulcer development. 

In future investigations, we plan to refine our method to 

yield superior results for human parsing tasks involving body 

pressure images and videos. Our upcoming initiatives will 

concentrate on precision measurement and predictive analysis 

of body movements, subdivided into different body parts, to 

devise the most efficacious method for pressure ulcer 

prediction.  
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