
Didactic Platform to Immersive Sound

Decoding for Binaural or Multichannel Speakers

Almeida, A.1, Preto Paulo, J.12

Abstract— The concept of immersive sound/3D sound has

gained great importance with the advent of VR/AR and also

with the transmission of live television programs.

Reproduction of this type of material requires

coding/decoding algorithms for headphones or loudspeaker

arrays with different geometries. Listening to spatial audio

through headphones is very convenient, only requiring the

spatialization codec and headphones. However, listening

through a multi-channel speaker system has far greater

realism. Thus, it is common practice to build listening rooms for

immersive sound using dozens of speakers that allow research

& development work to be carried out. Perceptual tests are

carried out with a sample of subjects to fine-tune the entire

system and choose the codec that best adapts to each space.

The work presented consists of an intuitive application to

perform auditory perception tests in order to evaluate the

different codecs based on the Unity3D game platform to

create the visual environment and on the audio production

application Reaper to support spatialization audio codecs.

The tested codecs are VBAP (Vector Based Amplitude

Panning) and Ambisonic. The use of this application greatly

facilitates all the procedures/logistics of perceptual tests,

greatly reducing the necessary preparation time. It also

allows the use of several simultaneous sound sources. The

application is being updated to use VR oculus, in order to be

used in therapeutic health plans using sound for patients with

cognitive problems and stressful situations, temporary or

permanent, in the Immersive Sound Room of the Audio and

Acoustics of ISEL (https://acusticaudiolab.isel.pt).

Keywords— Unity3D platform, Auralization, Binaural,

Multichannel Speaker, VBAP, Ambisonic.

I. INTRODUCTION

Surround sound has quickly become a consumer ‘must have’

in the audio world, due, in the main part, to the advent of the

Augmented Reality (AR)/Virtual Reality (VR) products like

André Almeida, ISEL-Instituto Superior de Engenharia de Lisboa, Portugal,

Email: a45120@alunos.isel.pt
Joel Preto Paulo, ISEL-Instituto Superior de Engenharia de Lisboa, LAA-

Audio and Acoustics Laboratory, Portugal, Email: , joel.paulo@isel.pt,

acusticaudiolab@isel.pt

the Oculus Rift and Playstation VR, the computer gaming

industry and 3D movies (Dolby Atmos). It is generally taken

to mean a system that creates a sound field that surrounds the

listener. Or, to be put another way, it is trying to recreate the

illusion of the ‘you are there’ experience. This is in contrast

to the stereophonic reproduction that has been the standard

for many years, which creates a ‘they are here’ illusion

(Glasgal, 2003c). The direction that the surround sound industry

has taken, when referring to format and speaker layout, has

depended, to some extent, on which system the technology has

been used for.

Soundfield recording and reproduction adopts physically-

based models to analyze and synthesize acoustic wave fields

[1–4]. It is normally designed to work with many

microphones and a multi-channel speaker setup. With

conventional stereo techniques, creating an illusion of

location for a sound source is limited to the space between

the left and right speakers. However, with more channels

included and advanced signal processing techniques adopted,

current soundfield reproduction systems can create a 3D

(full-sphere) sound field within an extended region of space.

Dolby Atmos (Hollywood, CA, USA) [5] and Auro 3D

(Mol, Belgium) [6] are two well-known examples in this

area, mainly used in commercial cinema and home theater

applications.

II. METODOLOGY

This project was conceived to allow the handling of the DAW

(Digital Audio Workstation) Reaper through the Unity game

engine. On this platform, it will be possible to control the

Reaper through several commands with the OSC protocol,

without having to interact directly with the DAW. The

data/command flow of this application is based on the following

architecture presented below.

Fig. 1 Data flow

It is seen, in the previous figure, that the communication

will be unidirectional, without the Reaper being able to send

messages to Unity. Note that Reaper has communication for

four plugins that will be assigned to several audio tracks, in

order to process the audio spatially. After this processed

1st Int'l Conference on Challenges in Engineering, Medical, Economics and Education: Research & Solutions (CEMEERS-23) June 21-22, 2023 Lisbon (Portugal)

https://doi.org/10.17758/EIRAI19.F0623122 42

mailto:a45120@alunos.isel.pt
mailto:joel.paulo@isel.pt
mailto:acusticaudiolab@isel.pt

audio, the output is transmitted either to headphones or sound

monitors (depending on the mode used in the application).

However, regarding the visualization (Unity), it will have a

more complex internal environment, so the following class

diagram was created, where the connections and

dependencies used in the application are presented. It can be

seen that the Source and Speaker classes are the only ones

that were developed and that are not MonoBehaviour, since

each of these represents a sound source or an audio monitor,

merely containing the pertinent information of each of the

objects. Note that the OSCTransmitter, VideoPlayer and

MonoBehaviour classes were imported for application

development.

Fig. 2 Class diagram

The interaction between Unity and Reaper aims to test

different application modes. These modes can be of two

types:

• Vector Base Amplitude Panning (VBAP): Method of

positioning virtual sources in arbitrary directions using a

multi-output configuration (speakers). This number of

outputs can be arbitrary, as can their positions in 2D or 3D

configurations.

• Ambisonics: Format of surround sound in a sphere (in

addition to the horizontal plane, it covers the sound sources

above and below, ie the vertical plane). It is a method for

recording, mixing and playing 360º three-dimensional audio.

To test these two modes there will be two scenarios in

which the application can run:

• Virtual scenario: The user can use a scenario created in

Unity, for example a studio, to test different combinations of

inputs and outputs;

• 360º Video: The user will be able to watch an immersive

360º video, which will be complemented by the audio in

question, for example a recording of a concert (image and

audio);

It is also available to the user the option to turn on or off

the binaural mode (which can be useful both in VBAP and in

ambisonics). This mode aims to simulate human hearing.

Binaural hearing, together with frequency filtering, makes

it possible to determine the direction of sound origin. It is a

sound recording and reproduction technique in which, with

only two microphones, it is possible to create an ambient

sound effect.

III. DEVELOPMENT

A. Open Sound Control (OSC)

Open Sound Control (OSC) is a protocol for networked sound

synthesizers, computers and other multimedia devices. It is

based on a language that performs pattern matching, specifying

the various recipients of a single message.

Open Sound Control includes a pattern matching language

for specifying multiple recipients of a single message. This

protocol was developed enabling maximum interoperability

and therefore provides a solution for communication between

applications and devices, locally or on a network.

This protocol was then used to allow communication

between both applications, sending messages from Unity that

will control Reaper parameters. To send these messages, the file

“MyOSC.ReaperOSC” was used, which contains the actions

and addresses of the different commands that can be executed

in Reaper through the aforementioned communication. Each

line is a description of the action in capital letters, followed by

various OSC message patterns (addresses). You can add,

remove, or change patterns, but not action descriptions.

Addresses are the messages that Reaper will be able to send and

receive with the OSC protocol.

Assuming that it is necessary to deactivate a plugin for a

certain track, one of the addresses given in the file is

“b/track/@/fx/@/bypass”, where “b” symbolizes that the

value of that action is a boolean and where “@” symbolizes

the number that corresponds to the intended track or plugin.

Therefore, to deactivate the first plugin of the first track, the

address will be “/track/1/fx/1/bypass” and the code to

implement will be the following.

To send a message to multiple plugins at the same time,

use the code below, where the first two are activated and the last

two are deactivated.

For more complete information about the addresses, read

the beginning of the “MyOSC.ReaperOSC” file.

1st Int'l Conference on Challenges in Engineering, Medical, Economics and Education: Research & Solutions (CEMEERS-23) June 21-22, 2023 Lisbon (Portugal)

https://doi.org/10.17758/EIRAI19.F0623122 43

It should be noted that, although it is possible to send and

receive messages from Unity, the messages received are not

through a request for information (such as calling a function).

To receive information from Reaper, it is necessary to bind a

function to the address where the information is to be

received. When the parameter in question is changed in Reaper,

a message will be sent to the linked address with the new

parameter value.

B. User Interface (UI)

Canvas

To present the application to the user, a UI canvas was

created, containing information such as the number of

inputs/sources, outputs/speakers, the application's audio mode

and possible commands.

Two buttons were created, one in each upper corner, so

that when “minimizing” the information text, the user can

have a clear view of the application. The button for information

was implemented in the upper left corner in the shape of an i,

so the button for the application's commands is present in the

upper right corner with the symbol of a list (hamburger menu).

It should be noted that, to represent the inputs, a treble clef

was used and, for the outputs, an audio monitor was used.

Fig. 3 Menus: Information and Commands

Scenes

To represent the virtual scenario, a model of the audio and

acoustic laboratory of the Instituto Superior de Engenharia de

Lisboa was used, where several tests can be carried out with

different arrangements of inputs and outputs. This model may

also have acoustic panels, which can be moved in order to

diversify the tests carried out in this scenario.

Fig. 4 Model of the audio and acoustics laboratory. (a) Inside and

(b) Outside

On the other hand, in order to reproduce the 360º video, a

sphere was created where the normals of its material were

inverted (), that is, when the Video Player component is

added, the video given as source is reproduced inside the

sphere, producing the illusion that the user is inside the video

scenario.

When applying the new material, despite having inverted

normals, the outside of the sphere continues to play the video

as if the material were the standard.

Fig. 5 Sphere for 360º video playback. (a) Inside and (b) Outside

Both in one scenario and in the other, it is possible to

present the inputs and outputs within them (of the model and

of the sphere), as it is possible to notice in the image (a) of

the previous figure.

C. Creating the Environment

When the application is started, the necessary conditions

are created so that the user can use it properly. To this end,

using Unity and the code implemented in it, the environment

1st Int'l Conference on Challenges in Engineering, Medical, Economics and Education: Research & Solutions (CEMEERS-23) June 21-22, 2023 Lisbon (Portugal)

https://doi.org/10.17758/EIRAI19.F0623122 44

in which the user will interact is defined. It is necessary that

this environment be the same within both platforms, so that

when the user performs any action in Unity, it is reflected in

Reaper.

To certify this synchronization, whenever the application

is started, Unity will send a series of OSC messages to

Reaper, defining the plugin parameters based on two JSON

files, “sources. json” and “outputs.json”, which store

information about sound sources (inputs/sources) and

columns (outputs/speakers). These files can be imported or

exported from Reaper plugins.

Fig. 6 Inport/Export JSON. (a) Inputs (b) Outputs

A JSON file that stores information about, for example,

sound sources, will have the following architecture shown

below, where within the Elements node all sound sources are

presented with their attributes, highlighting Azimuth and

Elevation.

Unity

To define the environment in Unity, the two JSON files

mentioned above are analyzed, saving the inputs and

outputs in two lists. To facilitate the creation of these lists, two

classes were created, Source and Speaker, which have three

public attributes, Azimuth, Elevation and Radius. With both

lists created and their elements added, it is possible to create

them in the scene.

Reaper

With the environment defined in Unity, the environment is

now defined in Reaper. To do so, the JSON files are

analysed, as before, and lists of inputs and outputs are

constructed. As in Unity, after defining the lists, it is possible

to start defining the environment. But, firstly, it is a priority

to mention which plugins are used in this project, which address

VBAP, ambisonics and binaural modes:

• VBAP: Sparta Panner;

• Ambisonics: Sparta AmbiENC e Sparta AmbiDEC;

• Binaural:

• Sparta Binauraliser ;

All the necessary plugin parameters are then defined when

starting the application.

Since it will be allowed to change between VBAP and

ambisonics modes and to enable/disable the binaural mode, it is

necessary to define the parameters of the four plugins right from

the beginning, so that the application does not need to define

them every time the mode is changed. Two functions were

implemented to achieve this goal:

• setVBAP();

• setAmbisonics();

Both functions specify the parameter values of the two

plugins that correspond to each mode.

To create the environment in Reaper, three value

conversion functions were also implemented. These functions

are necessary since each plugin parameter receives a value in

the range [0, 1], while the values used in Unity have different

ranges. Therefore, before sending OSC messages with the

new values, it is necessary to convert them to the requested

range.

After defining the parameters of the inputs, those of the

outputs are now defined, maintaining the same logic, where

first the desired number of columns is sent and only then the

azimuth and elevation values for each one. The only difference,

other than columns are used instead of fonts, are the IDs

entered in the address.

At the end of establishing the initial values of the fonts and

columns, the script where this processing is carried out is

destroyed.

D. System Control

Sound Sources (Inputs)
To control each sound source, a new script,

“SourceControl.cs”, was created and assigned to the prefab

of the sources (treble clef), that is, whenever a new source is

instantiated, it is already created with the controller. In this

script there is the public attribute id, which has its value

changed when a new instance is created (createSources()

function in the “SetUnityEnvironment.cs” and “AppControl.cs”

scripts, so that it is possible to have several sources with

different ids , allowing you to control one source at a time

without influencing the others.

At the end, two functions that were implemented in this script

are used - calculateAngles() and sendSourcePosition(). In the

sendSourcePosition() function, a message is sent via the OSC

protocol with the azimuth and elevation values to control the

sound source that is being dragged. It should be noted that

each sound source has two parameters to which a value must

be assigned (azimuth and elevation) in the three plugins in

question, VBAP, ambisonics and binaural.

With these two built-in functions and with the sending of

the position values of each sound source through OSC

messages, the results shown in the figure below are obtained,

where a source was positioned in the position where azimuth

= −35 and elevation = 10 through the Unity controls and the

same happened to the font position in the Reaper plugins.

1st Int'l Conference on Challenges in Engineering, Medical, Economics and Education: Research & Solutions (CEMEERS-23) June 21-22, 2023 Lisbon (Portugal)

https://doi.org/10.17758/EIRAI19.F0623122 45

Application

To control the application, whether in Unity or in Reaper

through Unity, a new script was created, “AppControl.cs”.

This script will control the following features: • Audio played

by Reaper; • Used modes (VBAP, Ambisonics and binaural);

• Virtual reality; • Visualization; • Yaw, Pitch and Roll;

Fig. 7 Sound source position. (a) Unity - Audio and Acoustics

Laboratory, (b) Unity - 360º Video and (c) Reaper

Audio

To control the audio reproduced by Reaper there are two

basic controls:

• P key: Play/Pause. Controls Reaper audio playback. If

the audio is being reproduced and the key is pressed again,

the reproduction is stopped, if it is stopped, the audio is

reproduced. In addition to controlling the audio, the video

used in the 360º scenario is also controlled, where the video

starts playing at the same time as the audio and, if you want

to pause the audio, the video will also pause.

If the user is equipped with virtual reality glasses or uses

the camera controls,

he will be able to look at a button with the image shown

below in order to play the audio.

In figure 8 you can see a white circular progress bar, which

moves clockwise, and when it reaches 0, the circle is

complete and disappears, just like the button. This

implementation is carried out in the startApp() function,

which is only carried out if the hasStarted variable is False.

Fig. 7 Location of play button and timer

The key: Stop. Stops the 360º audio and video, returning to

the beginning of both when the P key is pressed.

Number keys 1-9: Mute. When one of the numbers 1 to 9

is clicked, the track corresponding to that number is muted. If

the selected track is already muted, then it is active again.

To know the state of the track in question, the tracksMuted

dictionary presented in the previous code excerpt was

implemented. This dictionary contains 9 elements, where the

keys are integers from 1 to 9 and the value of each is a

boolean to indicate the status of the track, true if it is muted and

false if it is playing audio.

One sound source will have one instance of the plugins

while other sources will have other instances of the same

plugins. In this way, to show which sound sources are active

or deactivated, the material of the treble clef was changed,

changing it to gray if it is deactivated or blue if it is active.

Fig. 8 Source muted (left)– Unity

When viewing the effect that this action had on Reaper, it

can be seen that track 2 was also muted (active red button

with the letter “M”).

Fig. 9 Source muted - Reaper

Note that in this example only two fonts are instantiated in

Unity, while in Reaper there are 9. If a numerical key is

clicked and it corresponds to one of the fonts that is not

instantiated, this action will have no effect. For this, it is

necessary to instantiate more sound sources.

Application Mode

To change the application's operating mode between

VBAP and ambisonics, press the M key,

changing which plugins will be active. For this, two

functions were created:

• ChangeToVBAP(), ChangeToAmbisonics()

1st Int'l Conference on Challenges in Engineering, Medical, Economics and Education: Research & Solutions (CEMEERS-23) June 21-22, 2023 Lisbon (Portugal)

https://doi.org/10.17758/EIRAI19.F0623122 46

To activate or deactivate the binaural mode, the B key was

defined. In this way, the fourth plugin is activated or

deactivated, depending on its current status. In addition to

this status change, the information text and the isBinaural

variable are also updated. The code snippet below shows

only the binaural mode activation function.

Yaw, Pitch e Roll

To control yaw, pitch and roll values in plugins that use these

parameters, the sendYawPitchRoll() function was created,

used at each frame (Update() method). In this function,

values are assigned to the yaw, pitch and roll variables through

the rotation of the user's camera.

This rotation takes place by manual camera control or by

rotating the VR device. The three variables will correspond

to the three axes (x, y, and z) as follows: • Yaw: Y axis; •

Pitch: X axis; • Roll : Z axis;

After defining the variables, an OSC message is sent to

change the values of the parameters in question. For this

message, three value conversion functions are used,

convertYaw(float value), convertPitch(float value) and

convertRoll(float value). These functions apply a conversion

from the range in which the rotation in angles of the camera

on each axis is expressed to the range [0, 1].

IV. CONCLUSIONS AND FUTURE WORK

This project focused on the development of a virtual

reality application for testing and audio control through Unity

and Reaper platforms. With the use of these it was possible to

use several scenarios and modes (active plugins) to test different

factors.

From the data flow presented in the introduction (figure

1.1), it is concluded that there is no communication from

Reaper to Unity, defining it as a unilateral communication.

Therefore, the general procedure of the application involves

the user performing certain actions that will have an impact

on the audio control platform.

Regarding the implementation, the scripts were divided in

a logical way, similar to the logical architecture used in the

chapters of this document (see figure 1.2), each one covering

a specific area of the total implementation. This way, when it

is necessary to change the implementation of a goal, this

document can serve as a guide, providing a better idea of the

code's architecture.

However, it is necessary to mention an objective that was not

implemented completely correctly with regard to the Rotation

of Sources Around the User. Indeed, by dragging the sources

with the mouse, the user should be able to move them freely in

a hypothetical sphere around him. This sphere is not visible,

but when a source is dragged, it will move as if it were attached

to the user with a string, spinning around them. To do so, it

is necessary to calculate the angle that the source will move, as

discussed earlier. This angle calculation is efficient until the

source is shifted 90° or -90° in x. The source, when moved close

to these angles, starts to behave as if there were a barrier,

preventing it from going beyond that limit. This error occurs in

the OnMouseDrag() function, more specifically when using the

transform.RotateAround() and calculateAngles() functions,

and is due to the calculation of

the angle through the user's rotation of the source, since the

distance vector is projected between the two in one plane.

This error is not only visible when dragging the source in

Unity, but also in the Reaper plugin which is receiving

information about the azimuth and elevation coordinates of

the source in question.

We intend to continue this project for use with VR glasses.

In this way, we can create complete immersiveness in terms

of audio and image (video).

ACKNOWLEDGMENT

This work is being supported by the Audio and Acoustics

Laboratory of the Instituto Superior de Engenharia de Lisboa,

ISEL, LAA (https://acusticaaudiolab.isel.pt).

REFERENCES

[1] Abhayapala, T.D.; Ward, D.B. Theory and design of high order sound
field microphones using spherical microphone array. In Proceedings of

the IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), Orlando, FL, USA; 2002; pp. 1949–1952.

 https://doi.org/10.1109/ICASSP.2002.1006151

[2] Meyer, J.; Elko, G. A highly scalable spherical microphone array based

on an orthonormal decomposition of the soundfield. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), Orlando, FL, USA; 2002; pp. 1781–1784.

 https://doi.org/10.1109/ICASSP.2002.1006109
[3] Poletti, M.A. Three-dimensional surround sound systems based on

spherical harmonics. J. Audio Eng. Soc. 2005, 53, 1004–1025.

[4] Samarasinghe, P.N.; Abhayapala, T.D.; Poletti, M.A. Spatial soundfield
recording over a large area using distributed higher order microphones. In

Proceedings of the IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics (WASPAA), New Paltz, NY, USA;
2011; pp. 221–224.

[5] Dolby Atmos Audio Technology. Available online:

https://www.dolby.com/us/en/brands/dolby-atmos. html.

[6] Auro-3D/Auro Technologies: Three-dimensional Sound. Available
online: http://www.auro-3d.com/.

[7] Pulkki, V., ”Communication Acoustics: An Introduction to Speech,
Audio and Psychoacoustics”, Wiley, 2015.

 https://doi.org/10.1002/9781119825449
[8] Pulkki, V., ”Virtual Sound Source Positioning Using Vector Base

Amplitude Panning”, The Audio Engineering Society, 1997.

[9] Pulkki, V., ”Spatial Sound Generation and Perception by Amplitude

Panning Techniques”, Helsinki University of Technology, 2001.

[10] Gerzon, M. A., ”Periphony: With-height sound reproduction”, Journal of

the Audio Engineering Society, 1973.
[11] Daniel, J., ”Further investigations of High-Order Ambisonics and

Wavefield synthesis for Holophonic sound Imaging”, Journal of the

Audio Engineering Society, 2003.
[12] Morse, P., ”Theoretical Acoustics”, Princeton University Press, 1986.

[13] Daniel, J., ”Spatial Sound Encoding Including Near Field Effect:

Introducing Distance Coding Filters and a Viable, New Ambisonic
Format”, Journal of the Audio Engineering Society, 2003.

[14] Marruffo, A. ”A real-time encoding tool for Higher Order Ambisonics”,

2014.

1st Int'l Conference on Challenges in Engineering, Medical, Economics and Education: Research & Solutions (CEMEERS-23) June 21-22, 2023 Lisbon (Portugal)

https://doi.org/10.17758/EIRAI19.F0623122 47

https://doi.org/10.1109/ICASSP.2002.1006151
https://doi.org/10.1109/ICASSP.2002.1006151
https://doi.org/10.1109/ICASSP.2002.1006151
https://doi.org/10.1109/ICASSP.2002.1006151
https://doi.org/10.1109/ICASSP.2002.1006109
https://doi.org/10.1109/ICASSP.2002.1006109
https://doi.org/10.1109/ICASSP.2002.1006109
https://doi.org/10.1109/ICASSP.2002.1006109
http://www.dolby.com/us/en/brands/dolby-atmos
http://www.auro-3d.com/
https://doi.org/10.1002/9781119825449
https://doi.org/10.1002/9781119825449

