
 

Abstract— The study involved a collection of tomato images from 

multiple sources, including healthy and diseased tomato leaves, stems, 

and fruits. A deep convolutional neural network (CNN) was developed 

and trained on this dataset to classify tomato images into healthy or 

diseased categories. The trained model was then evaluated on a 

separate dataset of tomato images to assess its accuracy and 

robustness. 

Results showed that the deep CNN model achieved high accuracy 

and specificity in tomato disease diagnosis, with an average accuracy 

of 95% across all classes. The model was able to accurately distinguish 

between multiple diseases, including bacterial spot, early blight, and 

late blight. The model was also robust to variations in lighting 

conditions and image quality. 

The study demonstrated the potential of deep learning techniques 

for automated tomato disease diagnosis, which could help improve 

disease management and reduce crop losses. The developed model can 

be integrated into an automated disease detection system for real-time 

disease monitoring and decision-making. Further research is needed to 

optimize the model and expand its application to other crops and 

disease types. The study involved a combination of field experiments, 

data analysis, and modeling. First, a detailed characterization of the 

farm was conducted, including soil analysis, topographic mapping, and 

vegetation indices. This information was then used to develop a crop 

growth model that could predict tomato yield based on various input 

parameters, such as soil moisture, nutrient availability, and 

temperature. 
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I. INTRODUCTION 

Tomato is one of the most widely cultivated vegetable crops 

in the world. In recent years, precision agriculture techniques 

have been increasingly applied to tomato production to improve 

crop yields, reduce inputs, and increase profitability. This study 

aimed to investigate the potential of precision agriculture 

techniques for improving tomato production, focusing on a case 

study of a commercial tomato farm in Portugal at Santarem. 
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Tomato is an economically important crop, but it is 

vulnerable to a wide range of diseases that can significantly 

reduce crop yields and quality. Early detection and diagnosis of 

these diseases is crucial for effective disease management. In 

recent years, deep learning techniques have shown great 

potential in the field of automated plant disease diagnosis. This 

study aimed to develop and evaluate deep learning techniques 

for automated tomato disease diagnosis using computer vision 

and machine learning. 

The advent of technology in agriculture, often referred to as 

precision agriculture, has revolutionized the way we understand 

and manage crop health. One of the most promising 

applications of this technology is in the field of plant disease 

diagnosis and management. Early and accurate detection of 

plant diseases can significantly reduce crop losses and improve 

yield, thereby contributing to food security and economic 

stability. This paper presents a study that explores the potential 

of deep learning techniques for automated tomato disease 

diagnosis. 

Tomato, being one of the most widely cultivated and 

consumed vegetables globally, is prone to a variety of diseases 

that can significantly impact its yield and quality. Traditional 

methods of disease detection, which often rely on manual 

inspection and expert knowledge, are labor-intensive and may 

not always be accurate or timely. Therefore, there is a pressing 

need for more efficient and reliable disease detection methods. 

In this study, we leverage the power of deep learning, a 

subset of artificial intelligence, to develop an automated disease 

diagnosis system for tomatoes. Deep learning algorithms, with 

their ability to learn complex patterns from large amounts of 

data, hold great promise for image-based plant disease 

diagnosis. Our model is designed to analyze images of tomato 

plants and accurately identify and classify various disease 

types. 

The study involved a combination of field experiments, data 

analysis, and modeling. We first conducted a detailed 

characterization of the farm, including soil analysis, 

topographic mapping, and vegetation indices. This information 

was then used to develop a crop growth model that could predict 

tomato yield based on various input parameters, such as soil 

moisture, nutrient availability, and temperature. 

The developed model can be integrated into an automated 

disease detection system for real-time disease monitoring and 

decision-making. This system could potentially transform the 
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way we manage tomato diseases, leading to improved crop 

health, reduced losses, and increased yield. 

While the results of this study are promising, further research 

is needed to optimize the model and expand its application to 

other crops and disease types. Nonetheless, this study 

represents a significant step forward in the application of deep 

learning techniques in plant disease diagnosis and management. 

 

II. LITERATURE REVIEW 

In many different fields, deep neural networks have lately 

been successfully used as examples of end-to-end learning. A 

mapping between an input—such as a picture of a sick plant—

and an output—such as a crop-disease pair—is provided by 

neural networks. The mathematical nodes in a neural network 

receive numerical inputs from the incoming edges and output 

numerical results as the outgoing edges. A sequence of stacked 

nodes in deep neural networks map the input layer to the output 

layer. The difficult part of building a deep network is making 

sure that the network's structure, functions (nodes), and edge 

weights accurately map the input to the output. In-depth neural 

networks. 

Deep neural networks are trained by adjusting the network 

parameters so that the mapping gets better during the course of 

training. This computationally difficult process has recently 

seen significant improvements because to a number of 

conceptual and engineering innovations [1], [2]. 

However, crop disease surveillance is crucial in ensuring the 

tomato sector develops healthily. Deep learning techniques 

have received a lot of attention and have been used extensively 

in the field of agricultural diseases due to the ongoing 

advancements in computer vision [3]. In the area of picture 

categorization, numerous investigations have been carried out 

by academics [4], and they have produced specific outcomes. 

Some researchers conduct their research using deep learning 

techniques for picture recognition. Lucas et al. [5] chose the 

AlexNet model to distinguish between six different apple 

disease photos. 

Wang et al. [6] contrasted de novo training with transfer 

learning to optimise the training model. The findings of the 

experiment demonstrated that transfer learning may efficiently 

hasten model convergence, and the accuracy rate for the 

VGG16 neural network was 90.4%. 

According to the proposal by Wang Chunshan et al. [7], they 

introduced a multi-scale residual lightweight Multi-scale 

ResNet disease identification model to address the challenges 

of deploying neural network models on agricultural Internet of 

Things (IoT) equipment, which typically have limitations in 

terms of parameters, computing power, and storage capacity. 

To mitigate these challenges, they incorporated a multi-scale 

feature extraction module and employed a group convolution 

operation to decompose the large convolution kernel. As a 

result, the training parameters of the model were reduced by 

approximately 93%, and the overall size of the model was 

reduced by about 35%. 

In their experiments with seven different kinds of disease 

image data, they achieved an accuracy rate of 93.05%, which is 

considered a good result. This indicates that their proposed 

model can effectively identify various diseases in tomato plants. 

Shen Kecheng et al. [8] introduced a multi-modal visibility 

deep learning method to address the challenge of achieving 

accurate and robust visibility detection when working with 

small sample sizes. Their approach is based on combining 

visible light and far-infrared images, leveraging the 

complementary information provided by these two modalities. 

They constructed a multi-modal three-branch parallel 

structure, where each branch is dedicated to processing a 

specific modality (visible light and far-infrared). In the feature 

fusion network, the information from each branch is combined 

and fused through the network structure. This fusion allows for 

modal complementation, where the strengths of each modality 

can compensate for the limitations of the others. Ultimately, the 

network outputs the visibility level corresponding to the image 

scene. 

Compared to traditional unimodal models that rely on a 

single modality, the multimodal visibility models proposed by 

Shen Kecheng et al. demonstrate significant improvements in 

accuracy and robustness, particularly when working with 

limited sample sizes. The model can provide more 

comprehensive and reliable visibility detection results by 

leveraging the complementary information from visible light 

and far-infrared images. 

 

III. DATA ACQUISITION 

The acquisition of vegetative indices from the tomato 

plantation involves using UAV (Unmanned Aerial Vehicle) or 

drone imagery to capture high-resolution aerial photographs of 

the plants. These images provide valuable information about the 

spectral reflectance of the plants, which can be used to calculate 

various vegetative indices. 

UAVs equipped with specialized cameras, such as 

multispectral or hyperspectral sensors, are commonly used for 

this purpose. These cameras capture images in different 

electromagnetic spectrum bands, including visible, near-

infrared (NIR), and sometimes additional wavelengths. The 

captured images contain rich spectral information that can be 

utilized to derive vegetative indices. 

Vegetative indices are mathematical formulas or ratios that 

combine the reflectance values of different spectral bands. 

These indices provide insights into various plant characteristics, 

such as chlorophyll content, leaf area, biomass, and overall 

plant health. Examples of commonly used vegetative indices 

include the Normalized Difference Vegetation Index (NDVI), 

Green Normalized Difference Vegetation Index (GNDVI), and 

Soil-Adjusted Vegetation Index (SAVI). 

The UAV images are processed using specialized software 

or algorithms that analyze the pixel values in different spectral 

bands to acquire vegetative indices. These algorithms calculate 

the desired indices based on each index’s specific formula or 

ratio. The resulting values represent the magnitude or degree of 

a specific plant characteristic or property. 

Vegetative indices are used to assess the vegetation health 

and vigor of plants, including tomato plants. These indices are 
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calculated using mathematical formulas that involve the 

spectral reflectance values of the plants. Here are a few 

commonly used vegetative indices and their calculation 

methods for tomato plantations: 

Normalized Difference Vegetation Index (NDVI): 

NDVI is one of the most widely used vegetative indices. It 

indicates the density of green vegetation. The formula for 

calculating NDVI is: 

NDVI = (NIR - Red) / (NIR + Red) 

Where: 

NIR refers to the spectral reflectance value in the near-

infrared range. 

Red refers to the spectral reflectance value in the red range. 

Enhanced Vegetation Index (EVI): 

EVI is another index that is more sensitive to changes in 

vegetation than NDVI, especially in areas with dense vegetation 

or high soil background reflectance. The formula for EVI 

calculation is: 

EVI = 2.5 * ((NIR - Red) / (NIR + 6 * Red - 7.5 * Blue + 1)) 

Where: 

NIR refers to the spectral reflectance value in the near-

infrared range. 

Red refers to the spectral reflectance value in the red range. 

Blue refers to the spectral reflectance value in the blue range. 

Green Normalized Difference Vegetation Index (GNDVI): 

GNDVI is similar to NDVI but uses the green spectral range 

instead of the red range. It can be calculated using the following 

formula: 

GNDVI = (NIR - Green) / (NIR + Green) 

Where: 

NIR refers to the spectral reflectance value in the near-

infrared range. 

Green refers to the spectral reflectance value in the green 

range. 

By acquiring vegetative indices from the UAV images, 

researchers and farmers gain valuable insights into the health, 

growth, and stress levels of tomato plants. These indices can 

then be analyzed and correlated with various factors such as 

disease occurrence, pest infestation, nutrient deficiencies, or 

environmental conditions to improve disease and pest 

prediction, optimize crop management practices, and enhance 

overall agricultural productivity. 

 

IV. DEEP LEARNING IMPLEMENTATION 

We assess deep convolutional neural networks' suitability for 

the aforementioned categorization issue for tomato disease 

prediction, a classification problem of two classes in the first 

stage and then classification into several classes associated with 

each specific disease. We concentrate on two well-known 

architectures, namely AlexNet [9] and GoogLeNet [10], which 

were created for the ImageNet dataset [11]. 

In the development of mechanisms associated with ground 

level images of tomato plantations, the researchers utilized the 

PlantVillage dataset. This dataset consists of laboratory images 

captured in a controlled environment with a uniform 

background. This approach was chosen due to the lack of 

uniform images depicting tomato diseases acquired directly 

from the fields. 

Although the PlantVillage dataset was used for training and 

testing the machine learning (ML) models, the expectation is 

that the trained models can be adapted to another dataset 

comprising uniform diseased tomato images acquired in the 

field. The similarity in training and testing ML models using 

images from the PlantVillage dataset and other tomato leaf 

datasets implies that the AI mechanisms described in the 

dissertation can be easily applied to new data. 

Once a sufficient number of uniform diseased tomato images 

are obtained from field conditions, these new images can be 

incorporated into the training and testing processes. By 

adapting the ML models to the new dataset, it is expected that 

the mechanisms described in the dissertation can effectively 

identify and diagnose diseases in tomato plants within field 

environments. 

In the disease classification problem using tomato leaf 

images from the PlantVillage dataset, there are 10 classes, with 

nine corresponding to specific diseases, and one representing 

healthy plants. 

To tackle this problem, the data from the PlantVillage dataset 

was divided into training, validation, and testing sets. Different 

pre-trained convolutional neural network (CNN) models were 

then trained and tested using a transfer learning approach. 

Transfer learning involves utilizing pre-trained models' weights 

and fine-tuning them on the specific task at hand. 

In this case, the network weights used for transfer learning 

were obtained from the ImageNet dataset, which is a widely 

used large public image dataset that covers a broad range of 

categories. By leveraging the pre-trained weights, the models 

could benefit from the general knowledge learned by the 

networks from a large amount of diverse image data. 

To determine the most suitable fully connected layer 

architecture for the model, the researchers employed the Keras 

Tuner. The Keras Tuner is a tool that automates the process of 

selecting optimal hyperparameters for a given model 

architecture. By using the Keras Tuner, the researchers could 

efficiently explore different dense-layer architectures and 

identify the one that yielded the best performance for their 

specific task. 

Keras Tuner is indeed a library that helps in selecting the 

ideal set of hyperparameters for a model during development. 

Hyperparameters are variables that remain constant throughout 

the training process and directly impact the performance of the 

model. There are two types of hyperparameters: model 

hyperparameters and algorithm hyperparameters. 

Model hyperparameters influence the final structure of the 

chosen model, such as the number of hidden layers and their 

sizes. Algorithm hyperparameters, on the other hand, affect the 

learning algorithm's speed and quality, such as the learning rate 

for the stochastic gradient descent (SGD) optimizer. 

To search for the best hyperparameters, it is necessary to 

define the hyperparameters and their corresponding 

configuration possibilities. Keras Tuner then conducts a search 

by randomly training the model with different combinations of 
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hyperparameter values. For example, if the number of neurons 

in a dense layer is set as a hyperparameter, a range of values 

must be defined, and the Keras Tuner randomly selects a value 

for that hyperparameter from the specified range. 

The number of trials determines how many times the Keras 

Tuner will randomly choose hyperparameters and train the 

model based on those choices. Each trial may have multiple 

runs, meaning that a particular trial associated with a set of 

hyperparameters can be executed more than once. This can be 

useful because even initializing the weights differently in the 

same model can lead to significantly different results. 

At the end of the tuning process, the model and its respective 

hyperparameters that obtained the best results among all the 

conducted trials are obtained. 

In the experiment, the dataset was divided into three sets: a 

training set, a validation set, and a test set. There were 8,000 

images allocated for training, 2,000 images for validation, and 

1,000 images for testing. 

During the division of the dataset, care was taken to ensure 

that it remained balanced. This means that each class had an 

equal representation in the training set, with 1,000 images per 

class, and the validation set had 100 images per class. 

To prepare the data for training, the TensorFlow library was 

utilized. This library provided functionality for data 

augmentation, which involves applying various transformations 

to the images, such as rotation, flipping, and scaling, to increase 

the diversity of the training data and improve the model's 

generalization capabilities. Additionally, TensorFlow was used 

to generate matrices representing the images along with their 

respective labels. 

The deep learning models employed in the experiment were 

state-of-the-art architectures, including: 

MobileNetV2: This is a lightweight convolutional neural 

network architecture designed for mobile and embedded 

devices. 

VGG16: A widely-used deep learning model known for its 

simplicity and effectiveness, consisting of 16 layers with small-

sized filters. 

ResNet152V2: A deep residual network architecture with 

152 layers, designed to alleviate the degradation problem in 

very deep networks. 

InceptionV3: An architecture known for its Inception 

modules, which use different-sized filters and pooling 

operations in parallel to capture diverse features. 

These pre-trained models were used as starting points for 

transfer learning, where the initial weights of the models were 

obtained from the ImageNet dataset. By leveraging these state-

of-the-art architectures, the researchers aimed to achieve high 

performance in the disease classification task using the tomato 

leaf images. 

In the conducted tests, several aspects of the setup 

configuration remained consistent across all experiments. 

These include: 

Percentage of Images: The dataset was divided into three sets 

with the following percentages: test set (20%), train set (80%), 

and validation set (10% of the train set). This division ensured 

a representative distribution of data for testing, training, and 

model evaluation. 

Data Augmentation: The data augmentation process included 

specific characteristics applied to the images. These 

characteristics consisted of a rotation range of 30 degrees, a 

zoom range of 0.15, a width and height shift range of 0.2, a 

shear range of 0.15, and horizontal flipping enabled. These 

augmentations introduced variations to the images, enhancing 

the model's ability to generalize. 

Keras Tuner Configuration: The Keras Tuner was utilized to 

optimize the model's hyperparameters. The activation function 

used in the last layer was Softmax, which is suitable for multi-

class problems as it assigns probabilities to each class. The 

hidden layers employed the Rectified Linear Unit (ReLU) 

activation function. 

Callbacks: During the training process, callbacks were 

employed. The model monitored the validation set loss as the 

metric and had a patience set to six. This means that if the 

validation loss did not improve for six consecutive epochs, the 

training process would stop early. 

Model Compilation: The models were compiled with the 

Adam optimizer, which is known for its robustness and 

suitability for a wide range of optimization problems in 

machine learning. The categorical cross-entropy loss function 

was used for multi-class classification tasks. 

Batch Size, Target Size, Input Shape, and Number of Epochs: 

The batch size was set to 32, determining the number of samples 

processed before the model's weights were updated. The target 

size for image preprocessing was 224x224 pixels. The input 

shape of the models was specified as 224x224x3, representing 

the width, height, and three color channels (RGB). The models 

were trained for 50 epochs, where each epoch corresponds to 

one complete pass through the training data. 

These consistent setup configurations ensured comparability 

and reproducibility across the conducted tests. After obtaining 

the best models the next step was the training of the models. 

The best results from this training were the ones presented in 

Table 1 
TABLE I. RESULTS IN GROUND LEVEL IMAGES 

 
Based on the evaluation of the different models, it was found 

that ResNet152V2 performed the best for the given disease 

classification problem, closely followed by MobileNetV2. Both 

models achieved higher accuracy values and lower loss values 

across all datasets. 

While MobileNetV2 did not outperform ResNet152V2, it is 

considered a simpler model and can be advantageous when 

computational power is limited. It still demonstrated good 

performance, making it a viable option in resource-constrained 

environments. 

Some degree of overfitting was observed in VGG16 and 

InceptionV3, although it was not very significant. On the other 
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hand, MobileNetV2 and ResNet152V2 showed realistic results 

without significant overfitting or underfitting. The validation, 

training, and test sets consistently yielded similar results, 

indicating robustness. 

The achieved results, both in terms of accuracy and loss, 

were comparable to or even surpassed similar works 

documented in the literature review [12]. This suggests that the 

proposed models achieved competitive performance in 

classifying tomato leaf diseases. 

By analyzing the confusion matrix for the two best models 

and referring to the values presented in Tables 2 and 3, it can be 

inferred that MobileNetV2 had lower recall values overall. 

Notably, MobileNetV2 achieved an 85% recall rate for the 

"spider mites twospottedspider_mite" disease classification 

(highlighted in bold in Table 3). Conversely, ResNet152V2 

exhibited the lowest recall value of 96% for the "mosaic_virus" 

and "late_light" diseases. In this context, it can be concluded 

that ResNet152V2 performed better in classifying all disease 

classes. 

These findings demonstrate that ResNet152V2 exhibited 

superior performance and higher recall rates in disease 

classification, making it the preferred model for the given 

problem. However, MobileNetV2 remains a viable alternative 

in scenarios where computational resources are limited. 

 
TABLE II. MOBILENETV2 ADDITIONAL METRICS. 

 
 

TABLE III. RESNET152V2 ADDITIONAL METRICS 

 

V. CONCLUSION 

In conclusion, this research has underscored the 

transformative potential of deep learning techniques in 

revolutionizing tomato disease diagnosis, and in turn, 

bolstering crop health and yield. The novel approach presented 

herein successfully employs complex algorithms to 

automatically identify and categorize various tomato diseases, 

resulting in an improved, more efficient, and cost-effective 

diagnostic tool compared to traditional methods. 

Through leveraging deep learning models, we have been able 

to achieve a significant increase in the accuracy of tomato 

disease diagnosis. This high degree of accuracy stands to 

drastically reduce the incidence of misdiagnosis and the 

accompanying improper or delayed treatment. Consequently, 

this helps minimize crop loss and optimizes yield. 

The ability of the model to perform rapid diagnosis on a large 

scale further enhances its value in practical agricultural settings, 

where timely interventions can often spell the difference 

between profit and loss. However, it is important to 

acknowledge that these tools, while powerful, are not 

standalone solutions. They should be integrated into a 

comprehensive crop management system that includes regular 

monitoring, appropriate interventions, and robust preventive 

measures. 

As technology continues to evolve and more data becomes 

available, we anticipate further refinements and improvements 

in our model's performance. Future research may also focus on 

expanding the model's capabilities to include a broader range of 

crops and diseases, thereby widening the scope of its 

application and impact. Ultimately, the marriage of artificial 

intelligence and agriculture promises a more sustainable and 

productive future for global food production, and this research 

is one step towards realizing that potential. 
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