Investigation of Electrical Properties of CIGS/n-Si Heterojunction Solar Cell in Darkness and Light Environments

Serap YİĞİT GEZGİN¹, Yasemin GÜNDOĞDU² and Hamdi Şükür KILIÇ¹,3,4

Abstract— We have produced an Ag/CIGS/n-Si/Al heterojunction solar cell for this study. CIGS ultrathin film grown by PLD system have been examined in terms of the morphology, crystalline and optical properties. The crystalline size of CIGS ultrathin film, which has a single crystal structure, has been calculated by Scherrer equation. Micro strain and dislocation density of CIGS ultrathin films have been determined. Indium-rich CIGS ultrathin film’s stoichiometric transfer was deviated by a little. J-V curves of CIGS/n-Si solar cell and its electrical properties have been investigated as well as determined for the darkness and illumination environments. The ideality factor, serial resistance and barrier height calculated by Scherrer equation. Micro strain and dislocation density of the solar cell were calculated using the conventional J-V, Norde and Cheung-Cheung methods. The electrical parameters of CIGS solar cells have also been investigated for both environments and the results have been discussed in this study.

Keywords—CIGS ultrathin film, PLD, solar cell, heterojunction.

I. INTRODUCTION

CIGSe material is used to be an active layer in solar cells, being dominant in the thin-film photovoltaic (PV) market. CuIn(1−x)Ga x Se has a high absorption coefficient, adjustable band gap depending on the x value and high chemical and physical stabilities [1, 2]. CIGS material is often applied in thin-film solar cells to be a p-type semiconductor in the production of p-n heterojunction solar cells based Silicon (Si) for tandem solar cells [3, 4]. The limited efficiency of thin-film solar cells has led PV world to produce tandem solar cells. The experimental as well as many theoretical studies has been performed on the tandem solar cell. In the last few years, as a preliminary study for the production of CIGS tandem solar cells, efficiency improvement studies have been carried out in p-CIGS/n-Si heterojunction solar cells [5]. The fact that Si wafer is cheap and environmental friendly and has no impurity in its structure, and these properties gives it a great advantageous for tandem solar cells [3, 4].

PLD technique is a very powerful technique for the production of complex structured materials which composed of four-elements such as CIGS. PLD has adjustable parameters such as substrate temperature, laser fluency, back ground gas pressure and laser wavelength for thin film production with desired properties. Especially, stoichiometric transfer, crystalline and epitaxial growth in low substrate temperature and low material consumption by PLD technique are all very important factors which are sought in the production of the solar cells [5].

In this study, we have grown CIGS ultrathin film on n-Si wafer by PLD and then fabricated Ag/CIGS/n-Si/Al heterojunction solar cell by depositing Ag and Al front and rear contacts with Physical Vapour Deposition (PVD) system. Scanning Electron Microscopy (SEM), UV-vis spectroscopy, X-Ray Diffraction (XRD) methods were used to examine CIGS ultrathin film’s morphological, optical and crystalline properties. In both dark and illumination environments, J-V characteristics of CIGS/n-Si heterojunction solar cells were obtained. The electrical parameters of the heterojunctions were calculated and compared using the conventional, Norde and Cheung-Cheung methods. In addition, PV parameters have been determined.

II. EXPERIMENTAL

In this study, before the experiment process started, we have cleaned the soda lime glass (SLG) and Si wafer in the necessary procedure, as we explained in our previous study [6]. PVD technique was used to deposit Al contact in 100 nm thickness on Si wafer's back surface. In the PLD system, before start experimenting, the distance between target material on which materials ablated by laser and substrate on which ablated materials deposited was set at 45 mm. The vacuum chamber was evacuated down to a background pressure of to ~10⁻⁶ mbar. A laser beam (with 35 mJ energy, 1064 nm wavelength and a 10 Hz repetition rate) has been applied to ablate materials from CIGS sputtering target (% 99.99 pure) and then CIGS ultrathin film has been deposited on n-Si wafer front surface and SLG at room temperature by
28000 laser pulse number. Both CIGS ultrathin films were annealed for 30 minutes at 450°C temperature in the quartz tube furnace. Then, PVD technology was used to deposit Ag contact in 100 nm thickness on CIGS ultrathin film, resulting in Ag/CIGS/n-Si/Al solar cell shown in Fig.1.

![Diagram image of Ag/CIGS/n-Si/Al heterojunction solar cell](image)

Fig. 1. The diagram image of Ag/CIGS/n-Si/Al heterojunction solar cell

III. DISCUSSION

A. The Crystalline, Morphologic And Optical Characteristics Of Cigs Ultrathin Film

![XRD pattern of CIGS ultrathin film](image)

Fig. 2 XRD pattern of CIGS ultrathin film

It has been found that CIGS ultrathin film produced in 420 nm thickness has a dense main peak in (112) orientation on 2θ=27.34° [7-9], according to XRD pattern given in Fig. 2. The crystalline size of CIGS ultrathin film in the single crystal was calculated by applying Scherrer equation:

$$D = \frac{0.94\lambda}{\beta \cos \theta} \tag{1}$$

where \(D\) is crystalline size, \(\beta\) is the full-width at half-maximum of diffraction peak, \(\lambda\) is wavelength of X-Ray and \(\theta\) is Bragg diffraction angle. CIGS ultrathin film has high main crystalline size of 65.71 nm, according to calculations.

The dislocation density (\(\delta\)) and microstrain (\(\varepsilon\)) of thin films, which refers to defect formations that adversely affect the crystal structure of thin films [10, 11], can be calculated by Eq.(2) and Eq.(3),

$$\delta = \frac{1}{D^2} \tag{2}$$

$$\varepsilon = \frac{\beta \cos \theta}{4} \tag{3}$$

The dislocation density and micro-strain values of CIGS ultrathin film have been determined to be \(0.2 \times 10^{15}\) (lines/m²) and \(0.55 \times 10^{-3}\). Since \(\delta\) and \(\varepsilon\) values are small, CIGS ultrathin film’s crystalline structure is developed.

![SEM image and EDX Spectrum of CIGS ultrathin film](image)

Fig. 3 a) SEM image and b) EDX Spectrum of CIGS ultrathin film

TABLE I

<table>
<thead>
<tr>
<th>Thin film</th>
<th>Cu(%)</th>
<th>In(%)</th>
<th>Ga(%)</th>
<th>Se(%)</th>
<th>Cu/In+Ga</th>
<th>S/metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIGS</td>
<td>28.73</td>
<td>22.67</td>
<td>5.50</td>
<td>43.10</td>
<td>1.01</td>
<td>0.75</td>
</tr>
</tbody>
</table>

CIGS ultrathin film consists particles in heterogeneous size distribution and in sizes larger than 150 nm, as seen in SEM image in Fig. 3a. CIGS thin film is In rich due to EDX spectrum in Fig. 3b and the data given in Table 1. Cu and (In+Ga) ratios are very close to each other. The ratio of Se to metal is less than 1 and there is slightly deviation from the stoichiometric transfer.
CIGS ultrathin film tends to absorb light from the visible region to UV region and has an absorption peak in the 400-450 nm range, in the absorption spectrum given in Fig. 4a. The Tauc equation, which is given below, was used to calculate the band gap of the thin film:

$$\frac{(ahv)^2}{A} = (hv - E_g)^{1/2}$$ \(4\)

where \(h\nu\) is the energy of photon, \(A\) is a constant and \(E_g\) is thin film band gap. The straight line of \((\alpha h\nu)^2\) versus \((h\nu)\) in Tauc plot in Fig. 4b determines \(E_g\) band gap of CIGS thin film. According to this, CIGS ultrathin film’s \(E_g\) value was calculated to be 1.37 eV and consistent with the values found in the literature [12].

B. Electrical Properties Of CIGS/N-Si Heterojunction Solar Cell In The Darkness And Illumination

The rectification rates (RR) are expressed by the ratio of forward current at +1V to reverse current at -1V, which of CIGS heterojunction in the dark and illumination were found to be 2.22 and 0.24, respectively, according to log J-V curve in Fig. 5. RR values of CIGS hetero-junctions was measured to be very small for illumination conditions because the photocurrent in the reverse bias increases due to the formation of photo-excited charge carriers [13, 14].

The photocurrent density \(I_{photo}\) can be estimated by the equation stated below:

$$I_{photo} = I_{illumination} - I_{dark}$$ \(5\)

where, \(I_{illumination}\) is the current in reverse bias region for illumination, \(I_{dark}\) is the current in reverse bias region for darkness environment [15]. \(I_{photo}\) of CIGS/n-Si heterojunction solar cell has been calculated to be 0.022 A/cm².

A diode’s current and ideality factor [16, 17] has been given by Eq. (6) and (7), according to thermionic emission theory:

$$I = I_o \left[\exp \left(\frac{qV}{nkT} \right) - 1 \right]$$ \(6\)

$$n = \frac{q}{kT} \frac{dV}{d(\ln I)}$$ \(7\)

where \(I_o\), \(V\), \(n\), \(q\) and \(T\) are the saturation current, the forward bias voltage applied, Boltzman constant, the ideality factor, electric charge and the absolute temperature, respectively. A direct line is drawn in forward bias of log (J-V) to determine the ideality factor. \(n\) values of CIGS heterojunction for the darkness and illumination conditions was determined to be 2.90 and 3.71 in Table II, respectively. The higher ideality factor for the illumination can be attributed to that photo-excited charge carriers cause undesired charge transfer in the interfacial region of the depletion region.

Eq. (8) is used to determine a diode’s barrier height (\(\phi_b\)):

$$\phi_b = \frac{kT}{q} \ln \left(\frac{AA^{*}T^2}{I_o} \right)$$ \(8\)

where \(A\) and \(A^{*}\) are the active area of diode and Richardson constant (112 A cm⁻²K⁻² for n-Si), respectively. \(I_o\) is identified by a straight line drawn intersects with y-axis of the reverse bias in the log (J-V) curve in Fig. 5. The barrier heights determined for dark and illumination conditions were found as 0.54 eV and 0.49 eV, respectively [18, 19]. The lower \(\phi_b\) value for illumination condition can be explained due to electric field formed by photo-excited charge carriers in the illumination [20]. In addition, to the illumination environment, a higher saturation current can result in a low barrier height.
The serial (R_s) resistance [21] of the hetero-junction can be calculated using eq. (9):

$$R_s = \frac{\Delta V_{\text{forward bias voltage}}}{\Delta I_{\text{forward bias current}}}$$ \hspace{1cm} (9)

Serial resistance is an important parameter that affects the efficiency of the solar cell and calculated by the ratio of the voltage difference to the current difference in forward region. From R_s-V curve drawn in Fig. 6 using Eq. (9), R_s values of CIGS heterojunction in the darkness and illumination conditions have been calculated to be 54.63 Ω and 66.33 Ω, respectively. The series resistance values for both environments have been found to be close to each other. Contact resistances, interface defects, pinhole formations in CIGS ultrathin film can cause the serial resistance of the solar cell [6].

TABLE II

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Dark.</th>
<th>Illumin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J-V</td>
<td>n</td>
<td>2.90</td>
</tr>
<tr>
<td></td>
<td>ϕ_b (eV)</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>R_s (\Omega)</td>
<td>54.63</td>
</tr>
<tr>
<td>Cheung-Cheung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$dV/d\ln(J)$</td>
<td>n</td>
<td>6.57</td>
</tr>
<tr>
<td></td>
<td>R_s (\Omega)</td>
<td>32.72</td>
</tr>
<tr>
<td>Norde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F(V)$</td>
<td>n</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>R_s (\Omega)</td>
<td>86.75</td>
</tr>
</tbody>
</table>

R_s, n and ϕ_b values of the heterojunction can be determined using conventional J-V and Cheung-Cheung method [22]. Cheung-Cheung method has been defined by Eq. (10), Eq. (11) and Eq. (12) as described below:

$$\frac{dV}{d(\ln I)} = JR_s + n\left(\frac{kT}{q}\right)$$ \hspace{1cm} (10)

$$H(J) = V - \left(\frac{n k T}{q}\right) \ln\left(\frac{J}{A A^* T^2}\right)$$ \hspace{1cm} (11)

$H(J)$ curve in Fig. 7b have been determined from forward bias of log J-V characteristics in Fig. 6 and using Eq. (11). The slope and the y-axis intercept in $H(J)$-J curve show JR_s and $n\phi_b$, respectively. R_s and ϕ_b have been determined by $H(J)$-J curve in the darkness and illumination conditions have been determined to be 37.55\(\Omega\) and 0.61 eV; 60.58\(\Omega\) and 0.70 eV, respectively.

$H(J)$-J curve in Fig. 7b have been determined from forward bias of log J-V characteristics in Fig. 6 and using Eq. (11). The slope and the y-axis intercept in $H(J)$-J curve show JR_s and $n\phi_b$, respectively. R_s and ϕ_b have been determined by $H(J)$-J curve in the darkness and illumination conditions have been determined to be 37.55\(\Omega\) and 0.61 eV; 60.58\(\Omega\) and 0.70 eV, respectively. The results for the barrier height calculated by Cheung-Cheung method have been found slightly different compared to the conventional J-V curve and Cheung-Cheung methods can be concluded that is based on the use of the reverse bias and forward bias region of the J-V and, respectively.

Norde method was used to determine the serial resistivity and barrier height of the heterojunction [23]. Norde method is stated by Eq (13):

$$F(V, y) = \frac{V}{y} - \frac{k T}{q} \ln \left(\frac{f(V)}{AA^* T^2}\right)$$ \hspace{1cm} (13)
where γ is the first constant higher than ideality factor determined from log J-V curve. Also, R_s and ϕ_b values are calculated by Eq.(14) and Eq.(15) of Norde method;

$$\phi_b = F(V_0) + \frac{V_0}{\gamma} - \frac{kT}{q}$$
(14)

$$R_s = \frac{V - n \frac{kT}{I_{min}}}{q}$$
(15)

where V_0 is a voltage that corresponds to the minimum $F(V_0)$ value of $F(V)$-V curve in Fig. 8. I_{min} is a current for the minimum voltage in J-V curve. R_s and ϕ_b values of the heterojunction have been calculated to be 86.75Ω and 0.72 eV; 121.62Ω and 0.75 eV by Norde method to darkness and illumination conditions, respectively, and found to be higher than that calculated by other methods. This situation can be attributed that the calculation can be performed using Norde method calculations is based on the all forward bias region in J-V curve [24].

![Fig. 7. F(V)-V curve of CIGS/n-Si heterojunction in the darkness and illumination](image)

According to the J-V curve in Fig. 8, PV parameters of CIGS/n-Si solar cell can be determined to be $J_{sc}=0.46$ mA/cm2, $V_{oc}=300$ mV, $FF=0.14$ and $\eta=0.024\%$. The defects, traps and hanging bonds in the interface, surface resistance of the thin film, contact resistances of Ag and Al metals can cause low J_{sc} and FF values. Because the ultra-thin film is so thin, pinholes and shunt paths can form in the thin film, which can generate leakage current. CIGS ultrathin film formed in small sized particles has multiple grain boundaries and photo-excited minority charge carriers which can recombine in traps and defects hidden within these boundaries. Also, the light falls directly on CIGS ultrathin film and since CIGS ultrathin film is in 420 nm thickness, the photo-excited minority charge carriers formed in CIGS undergo recombination on Ag contact before they reach the depletion region [6, 25, 26]. These negative factors can cause low J_{sc} and FF values and thus efficiency of CIGS/n-Si solar cell. However, CIGS solar cell based on Si exhibits PV properties. By adjusting CIGS ultrathin film to optimum thickness, and using contact metals with more ideal work functions, CIGS/Si heterojunction solar cells can be produced for the tandem solar cells with high performance.

![Fig. 8. J-V curve of CIGS/n-Si heterojunction solar cell](image)

IV. CONCLUSION

In this study, we have grown CIGS ultrathin film in 420 nm thickness, using PLD system. CIGS ultrathin film has a single crystal structure and its crystal size, dislocation density and microstrain are 65.71 nm, 0.2×10^15 (lines/m2) and 0.55$\times 10^{-3}$, respectively. CIGS ultrathin film is In-rich, in which Cu and (In+Ga) ratios are very close to each other and its band gap is 1.37 eV. RR value of CIGS heterojunction in the dark and illumination conditions are 2.22 and 0.24, respectively. CIGS heterojunction’s n, ϕ_b, R_s values have been determined to be 2.90, 0.54 eV, 54.63 Ω and 3.71, 0.49 eV, 66.33 Ω from log J-V curve, for the darkness and illumination conditions, respectively. These electrical parameters have been calculated by Cheung-Cheung and Norde methods, and found as partially compatible with each other. CIGS/n-Si solar cell’s photovoltaic parameters are $J_{sc}=0.46$ mA/cm2, $V_{oc}=300$ mV, $FF=0.14$ and $\eta=0.024\%$. The defects, traps and hanging bonds in the interface, pinholes, shunt paths, contact resistances, grain boundaries, the recombination on the contact can cause low J_{sc}, FF values and thus efficiency of CIGS/n-Si solar cell. However, CIGS/n-Si solar cell can be considered a preliminary study for CIGS tandem solar cells and many improvement studies should be done on this solar cell in this direction.

ACKNOWLEDGMENT

Authors kindly would like to thank,
- Selçuk University, High Technology Research and Application Center and
- Selçuk University, Laser Induced Proton Therapy Application and Research Center for supplying with Infrastructure and
- Selçuk University, Scientific Research Projects Coordination (BAP) Unit for grands via projects with references of 20401018 and 18401178
REFERENCES

Associate Professor, Dr. Serap YIGIT GEZGIN graduated from Süleyman Demirel University, Faculty of Science, Department of Physics, in 2002. In 2009, She completed her master studies in Department of Physics, High Energy and Plasma Physics at Süleyman Demirel University. She completed her doctor of philosophy in the Department of Physics and Atomic and Molecular Physics at Selçuk University, in 2019. He was appointed Associate Professor in 2021, and still continues to work as an Instructor at Selçuk University, Faculty of Science.

https://doi.org/10.17758/EIRAi10.F1021110
Associate Professor, Dr. Yasemin GÜNDOĞDU graduated from Selcuk University, Faculty of Science, Department of Physics, in 2011. In 2014, she completed her master studies in Department of Physics, Atomic and Molecular Physics at Selcuk University. She completed her doctor of philosophy in the Department of Physics and Atomic and Molecular Physics at Selcuk University, in 2018. She was appointed Associate Professor in 2019, and still continues to work as an Instructor at Selçuk University, Faculty of Science.

Prof. Dr. Hamdi Sukur Kılıç graduated from Selcuk University, Faculty of Engineering and Architecture, Department of Physics Engineering, Physics Engineer in 1988. In 1990, he started to work as a research assistant in the Department of Physics and Atomic and Molecular Physics at Selçuk University. He completed his doctoral studies at Glasgow University in 1997. He was appointed Assistant Professor in 1998, Associate Professor in 2002 and Professor in 2007, and still continues to work as an Instructor at Selçuk University, Faculty of Science.